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ABSTRACT

Multipath fading phenomenon is central to the design and analysis of wireless communica-

tion systems including multiuser systems. If untreated, the fading will corrupt the transmitted

signal and often cause performance degradations such as increased communication error and

decreased data rate, as compared to wireline channels with little or no multipath fading. On

the other hand, this multipath fading phenomenon, if fully utilized, can actually lead to sys-

tem designs that provide additional gains in system performance as compared to systems that

experience non-fading channels.

The central question this thesis tries to answer is how to design and analyze a wireless

multiuser system that takes advantage of the benefits the diversity multipath fading channel

provides. Two particular techniques are discussed and analyzed in the first part of the thesis:

quadrature amplitude modulation (QAM) and diversity receivers, including maximal ratio

combining (MRC) and generalized selection combining (GSC). We consider the practical case

of imperfect channel estimation (ICE) and develop a new decision variable (DV) of MRC

receiver output for M -QAM. By deriving its moment generating function (MGF), we obtain

the exact bit error rate (BER) performance under arbitrary correlated Rayleigh and Rician

channels, with ICE. GSC provides a tradeoff between receiver complexity and performance.

We study the effect of ICE on the GSC output effective SNR under generalized fading channels

and obtain the exact BER results for M -QAM systems. The significance of this part lies in

that these results provide system designers means to evaluate how different practical channel

estimators and their parameters can affect the system’s performance and help them distribute

system resources that can most effectively improve performance.

In the second part of the thesis, we look at a new diversity technique unique to multiuser
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systems under multipath fading channels: the multiuser diversity. We devise a generalized

selection multiuser diversity (GSMuD) scheme for the practical CDMA downlink systems,

where users are selected for transmission based on their respective channel qualities. We include

the effect of ICE in the design and analysis of GSMuD. Based on the marginal distribution

of the ranked user signal-noise ratios (SNRs), we develop a practical adaptive modulation

and coding (AMC) scheme and equal power allocation scheme and statistical optimal 1-D

and 2-D power allocation schemes, to fully exploit the available multiuser diversity. We use

the convex optimization procedures to obtain the 1-D and 2-D power allocation algorithms,

which distribute the total system power in the “waterfilling” fashion alone the user (1-D) or

both user and time (2-D) for the power-limited and energy-limited system respectively. We

also propose a normalized SNR based GSMuD scheme where user access fairness issues are

explicitly addressed. We address various fairness-related performance metrics such as the user’s

average access probability (AAP), average access time (AAT), and average wait time (AWT)

in the absolute- and normalized- SNR based GSMuD. These metrics are useful for system

designers to determine parameters such as optimal packet size and delay constraints.

We observe that Nakakagami-m fading channel model is widely applied to model the real

world multipath fading channels of different severity. In the last part of the thesis, we propose

a Nakagami-m channel simulator that can generate accurate channel coefficients that follow

the Nakagami-m model, with independent quadrature parts, accurate phase distribution and

arbitrary auto-correlation property. We demonstrate that the proposed simulator can be ex-

tremely useful in simulations involving Nakagami-m fading channel models, evident from the

numerous simulation results obtained in earlier parts of the thesis where the fading channel

coefficients are generated using this proposed simulator.
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CHAPTER 1. INTRODUCTION

1.1 Overview of Multiuser Wireless Communication Systems

Wireless communication industry has seen explosive growth in the past decade, as nu-

merous new applications and network services such as wireless local area network (WLAN),

third generation (3G) and beyond wireless cellular system, wireless metropolitan area network

(WMAN), and Worldwide Interoperability for Microwave Access (WiMAX)are now getting

increasingly popular. Some of the common goal of those new technologies and systems are to

support simultaneous access of multiple users and to provide users with better throughput,

lower power consumption and larger coverage area. Research efforts on multiuser wireless

communication systems will create exciting new opportunities that have the potential to fun-

damentally change the way people communicate.

The unique nature of wireless channels presents many challenges as well as opportunities to

the system designers. First of all, wireless channel exhibits fading of different scale, from the

long-term path loss and shadowing to the more volatile multipath fading, which will greatly

corrupt the received signal and degrade system performance if left untreated. On the other

hand, multipath fading presents the potential to improve the system performance if diversity

combining receivers are utilized. Secondly, any wireless communication system must operate

with the limited and usually expensive spectral resources. A major challenge is to design the

wireless communication system such that this limited resource can be utilized to the fullest

extent. For uncoded communication, a straightforward solution is to use the modulation

schemes that have high spectral efficiency such as M -ary QAM, and thus provide high-speed

communication with limited bandwidth. The price to pay for this increased spectral efficiency

is less reliable reception given the same transmitting power level, but this can be mitigated by
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diversity combiners.

Furthermore, due to the multiuser nature of many practical wireless communication sys-

tems, harmful interference from unintended users also poses a problem. This often results in

lower reception reliability, lower capacity or both. Numerous multiple access schemes such as

time-division multiple access (TDMA), frequency-division multiple access (FDMA), and code-

division multiple access (CDMA) have been proposed to separate different users, by putting

their traffic on orthogonal channels thus minimizing mutual interference. A problem with or-

thogonal multiuser system is the inefficient use of total system resources, especially in wireless

multipath fading environment. If the system assigns the orthogonal channels to users without

considering the fading channel state of those particular uses, total system throughput could

suffer. On the other hand, channel scheduling algorithms that actively use the information

on fading channel conditions by assigning channels to users who have the biggest the channel

gains, can provide a gain in terms of total system capacity. This additional gain due to wireless

fading channel and multiuser nature is called multiuser diversity gain [64,75].

Finally, it’s evident from the preceding discussion that fading phenomenon in wireless chan-

nels is utterly important to system design and performance analysis. An additional challenge

for system designers is how to accurately model and simulate the multipath fading channel.

Only after the successful designing of an accurate fading channel simulator, can system perfor-

mance under actual physical fading conditions be simulated and new algorithms be verified.

In what follows, we introduce some of the major techniques to address the important issues

identified above.

1.2 Diversity Combining

Multipath fading channels provide multiple replicas of the transmitted signal arriving with

different phase and magnitude. Diversity combining technique takes advantage of this fading

phenomenon, by combining these distinct replicas. If the wireless channel provides a rich

scattering environment that results in the multiple copies of the transmitted signal being almost

independent of each other, diversity reception technique can provide a significant diversity gain
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over the flat fading channels where there is no multipath fading. This is possible because of

the fact that it is a rare event that all available replicas will experience deep fading at any

given time where there’s significant signal attenuation. As long as the signal levels of some

of the replicas are reasonably high, the system could still correctly determine the transmitted

signal, and provide diversity gain.

Depending on how to combine available diversity branches, diversity combiner can be clas-

sified into MRC or equal gain combiner (EGC). In MRC, the output is the weighted and

co-phased sum of signals from all available branches, where the weight assigned is the com-

plex conjugate of each branch’s respective channel gain normalized by its noise power. MRC

provides maximal output SNR and consequently maximal performance gain under white noise

assumption. EGC only requires the estimation of channel phase and combines the co-phased

branches but provides smaller diversity gain.

Judged by how many of the available diversity branches are being used in the combiner,

we could differentiate the diversity combiners into “maximal” combiners where all detectable

diversity branches are used, or “generalized selection” combiners (GSCs), also called hybrid

selection/maximum ratio combining (HS/MRC) [35, 36, 41], where only a fraction of the total

diversity branches are used. We can further dissect those general selection combiners into

different subgroups based on what criteria are used in the selection process. If the selection is

based on a predefined fixed number of diversity branches to be combined, it’s the conventional

GSC. The number of branches selected can be determined by the system designer based on

desired level of performance, quality of service (QoS) and system complexity requirements, and

thus bridges the gap between MRC and SC. GSC will usually provide a BER performance that

is comparable to that of MRC and at the same time with reduced implementation complexity.

If the selection of diversity branches is based on a predetermined threshold of SNR, it is actually

called threshold-GSC or minimal selection-GSC [7].

Besides multipath diversity, there are other forms of diversity as long as multiple replicas

of the same signal are available at the receiver. The same principal and method of analysis of

diversity combining techniques developed for the multipath diversity (MRC, EGC and GSC)
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can be easily extended to those scenarios. For example, spatial diversity is possible in multiple-

input multiple-output (MIMO) system, and frequency diversity can be available in frequency

hopping, orthogonal frequency-division multiplexing (OFDM), and multi-carrier CDMA (MC-

CDMA) systems.

1.3 Imperfect Channel Estimation

Many communication systems require channel state information (CSI) either at the receiver,

at the transmitter or both. Systems with coherent detection, receive beamforming, diversity

combining are the examples that CSI is needed at receiver. Transmit beamforming would

be an example that requires CSI at the transmitter (CSIT). The process to obtain CSI is

called channel estimation. Generally speaking, channel estimation is usually realized either

by the using of training symbols called pilot symbols assisted modulation (PSAM), by the

so-called blind estimation approaches that don’t rely on pilot symbols, instead on some known

higher order statistics of the data symbols being transmitted, or by the decision feedback (DF)

estimator where soft- or hard-decoded data symbols are fed back to update channel estimation

iteratively.

In practice, it is hard to obtain the CSI accurately in wireless channel because of delay

and complexity constraints and the inherent nature of wireless channel such as multipath

fading, doppler shift, among others. More often, the practical channel estimator output is

stochastic and imperfect, thus the adverse effect of ICE as compared to the perfect CSI case

must be considered. Intuitively, the inherent channel estimation error will degrade the system

performance. An important problem to answer next is how to model the effects of the ICE on

system performance and how to design better channel estimators and fine-tune their parameters

to achieve the optimal tradeoff of performance, complexity and overhead.

1.4 Multiuser Communication

Many wireless communication systems are multiuser systems, where system resources are

usually divided among users. In centralized systems, multiple users communicate with a cen-
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tral node or base station. The communication channels to and from this base station are

called uplink and downlink channels, respectively. The technique of allocating channels to

specific users is called resource allocation technique, which divides the total available signaling

dimensions (time, frequency, code, and sector) into channels and then assigns these channels

to different users. In ad hoc systems, there are no central stations to coordinate or relay user

traffic. Instead, all the resource allocation and actual communications happen entirely via the

coordination of participating users, usually through contention-based procedure.

Some of the most commonly used multiple access techniques divide the signaling space

along the time, frequency, and code dimensions.TDMA and FDMA are mostly orthogonal

channelization methods whereas CDMA can be orthogonal or non-orthogonal, depending on

the code design. All the orthogonal schemes are equivalent in the sense that they orthogonally

divide up the signaling dimensions and will have the same channel capacity in AWGN. Under

fading channel conditions, those schemes sometimes will provide different capacities, depending

on the criteria they use to assign the available orthogonal channel resources to users.

There are categorically two kinds of channel resource allocation schemes. The first is what

we call channel independent resource allocation (CIRA), where users are assigned the channel

resources in a predetermined fashion independent of the current fading channel condition they

experience. One widely used CIRA scheme is round robin, where resources are assigned to

users in the order of their index. The other type of resource allocation scheme is channel aware

resource allocation (CARA) where user’s channel condition is considered in the allocation pro-

cess. CARA has the potential to provide larger capacity in multiuser wireless communication

systems by using the multiuser diversity.

Multiuser Diversity (MuD) is inherent in any multiuser systems with fading channels and

can be exploited by tracking the individual user channel quality between the transmitter and

the receiver and transmits to the receiver with the largest channel gain. MuD gain is a diversity

gain in addition to any existing point-to-point “normal” diversity gain discussed in Section 1.2.

It arises from the fact that in a network with many independent users, there is likely to be a user

with a very high channel quality. We noticed that the “normal” diversity combiner improves
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the lower tail of the PDF of the received SNR, reducing the probability that the effective SNR

of the combined output signal from the diversity combiners is low. MuD exploits the higher

tail of the PDF of the received SNR, by always picking those user channels at the fading stage

that are in the high SNR region. As a matter of fact, the potential performance gain due

to MuD in rich fading environment prompts some work [75] to “create” artificial rich fading

multiuser channels when the physical channel exhibits moderate fading, to fully exploit the

MuD.

An example of MuD is given in [64] for uplink channel in a single cell with multiple users

communicating to the base station via time-varying fading channels. It is assumed that the

channel is tracked at the base station and CSI is fed back to the subscribers. The maximal

total information-theoretic capacity for a TDMA system is achieved by an optimal strategy

to let the user with best channel to transmit at any given interval and this capacity is greater

than that of a single user system under the same setup. Multiuser diversity gain is possible

because of the inherent fading phenomenon in wireless channels just as diversity receivers are

possible in wireless communication. They both utilize the fact that the fading channel can

provide received signals with wider dynamic range and that the system can choose to use.

We’ll show that this underlying similarity also prompts to similar approaches in tackling with

these two seemingly different problems.

In any practical multiuser systems, not all users are equal in terms of amount of traffic

created and QoS requirements. These users could be one of several typical QoS classes [73]:

non-real-time variable bit rate, available bit rate, unspecified bit rate, constant bit rate and

real-time variable bit rate. And even in the same class, the demanded bit rate will differ from

one user to another. Consequently, one of the most important tasks in a multiuser system is

how and when to assign the available multiuser channel resources to those users and this task

is called multiuser scheduling. Multiuser scheduling algorithms aim to meeting the following

goals: (1) satisfying the individual user’s required QoS (i.e. BER), (2) providing maximal

combined throughput for all users, and (3) other system considerations (i.e. power constraints,

fairness requirements, and system lifetime requirements).
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Multiuser scheduling is a cross-layer design problem because it balances requirements of

different layers in terms of QoS(throughput, BER, latency), capacity, and power constraints.

In addition, the algorithm that always schedules the strongest user may cause some channel

access fairness issue because some users with the stronger average channel strengths (e.g.,

the user who is closer to the base station) may monopolize channel access resources. Other

multiuser scheduling algorithms [65,66,75,79] take into account the fairness issue and although

the multiuser sum rate may not be as large, each user will have more fair share of access to

the channel resources.

1.5 Fading Channel Simulator

As discussed above, the fading phenomenon in wireless channel is inherent to any wireless

communication system. Accurate and realistic models of the fading channel will provide us

with the ability to design new systems and analyze their performance. Another important

yet under-researched topic is the computer simulation of the real-world fading channels. We

need accurate, manageable, repeatable and computationally efficient fading channel simulators

for research and development of various wireless communication systems under popular fading

channel models. First, it will help the researcher to verify the correctness and accuracy of the

theoretical results obtained against the simulation results. In many scenarios, the researcher

usually assumes certain popular fading channel models and based their results on such models.

An accurate fading channel simulator that literally adheres to such models is a prerequisite for

the simulation results to be comparable to analytical results. More importantly, the availability

of such simulators will greatly aid the engineers in accelerating the rate of discovery and

evaluation of many emerging technologies and schemes. System designers will be able to

simulate system performance under practical fading models that resembles the physical world

closely during the conceptual design stage. Once the concept is proved, during the system

design stage, optimal system parameters could be obtained efficiently by using the simulator

without the need to build and test actual systems in real fading channels, which tend to be

expensive and time consuming.
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Stochastic models are used to describe the fading channel response characteristics. The

models are considered to be time-variant because the scatter or reflector that causes the mul-

tipath transmission in fixed wireless application almost certainly will move during any given

period of time and thus change the received multipath components, and cause its time-variant

behavior. In mobile application, the movement of wireless transmitter and/or receiver will only

make the channel more time-variant. Because the movements of the scatters and/or wireless

transmitters and receivers are correlated in time, and thus the multipath received signals, wire-

less fading channels are usually temporally correlated. The resulting power spectrum density

for wireless channels can take various forms. One widely adopted model is Jakes’ fading spec-

trum [121, 122] for isotropic scattering environment where there are large number of scatters

causing reflected multipath components arriving at all angles uniformly at the receiver.

Fading channels can be divided into frequency non-selective fading and frequency selective

fading channels. Models and simulators for the two cases are treated differently. For frequency

non-selective channels, the signal symbol duration is larger than the maximal delay spread of

the multipath components and thus the fading channel effects can be modeled as a single tap.

The baseband equivalent channel can then be modeled as a complex number with its amplitude

and phase follow certain families of distribution. The specific distribution parameters are

dependent on the fading environment and the chosen models.

One particular example is the Rayleigh fading channel model where the in-phase and the

quadrature parts of the channel coefficients follow zero-mean Gaussian distribution. The re-

sulting envelop follows the Rayleigh distribution and the phase follows a uniform distribution.

Rayleigh fading model describes the physical fading condition where there are abundant reflec-

tors but no direct line-of-sight (LOS) component. One approach to generate Rayleigh fading

channel is the sum of sinusoids, which uses the central limit theorem to approximate the Gaus-

sian distribution of the Rayleigh fading channel quadrature and in-phase components. In [126],

a Rayleigh channel simulator using an inverse discrete Fourier transform (IDFT) was proposed.

In [108], Young and Beaulieu designed an improved method for Rayleigh channel simulation

for the Clarke’s fading spectrum (i.e., the Jakes’ model) using the IDFT and frequency domain
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filtering where white signal is multiplied by the desired power spectrum density in frequency

domain and time samples are obtained by IDFT. In [109] a method based on auto-regressive

model was proposed to generate Rician fading channels with both pre-specified temporal cor-

relation and mult-channel spatial correlation.

A more general fading model that gained significant interest in recent years is Nakagami-m

fading model, which can account for fading conditions more severe or less severe than the

Rayleigh case, including the non-fading channel. A significant amount of research on wireless

system design and performance analysis has adopted the Nakagami-m fading channel model

[98–102,104,105]. In addition, several experimental and theoretical works have shown that the

Nakagami-m distribution is the best-fit for the amplitude by data obtained from many urban

multipath wireless channels [113, 114, 123]. We notice that it’s a non-trivial task to generate

in computer simulations the fading channel coefficients that follow the Nakagami-m channel

model. The difficulties lie in the fact that (1) it’s difficult to generate random variable (RV)

that follows the Nakagami-m distribution which is non-Gaussian (thus not directly applicable

to utilize the central limit theorem), (2) it’s hard to generate the channel with a correct phase

distribution, and (3) difficulties in providing correct auto-correlation properties.

Different approaches in the literature were taken to build a Nakagami-m channel simula-

tor, with limited success. In [117, 131], techniques to generate spatially correlated Nakagami

sequences are designed using the correlation matrix decomposition method and other tech-

niques. The method proposed in [95] is useful for generating Nakagami-m distributed RV with

integer and half-integer values of m. A method to generate Nakagami-m fading channels for

0.5 ≤ m ≤ 1 is proposed in [110]. The amplitude of the channel coefficient produced by the

simulator proposed in [111] follows the Nakagami-m distribution with arbitrary m, but its

phase distribution and temporal correlation are inaccurate.

1.6 Problem Formulations and Main Results

In the preceding sections, we discussed some of the challenges in wireless communication

design and analysis and the possible solutions. The topics discussed are essential and unique
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to the wireless communication systems where the multipath fading phenomenon is prominent.

The goal of this thesis is to investigate the three major issues we have identified above and to

provide new analytical approaches and possible solutions to tackle the problems for real-world

situations.

The combination of spectrum-efficientM -QAM modulation, diversity-combining techniques

such as MRC, and robust channel estimators will generate a practical receiver structure for

wireless communication systems. It’s an important yet often under-researched topic that how

the different types of channel estimators and their parameters will affect the performance of the

MRC diversity combiner under Rayleigh and Rician fading channels. The diversity branches

available to MRC combiner can be either statistically independent of each other or corre-

lated. In rich scattering environment, those branches tend to have smaller correlation while

in scenarios where there is LOS or near LOS present, the available diversity branches show

more correlation among each other. Thus this prompts a valid problem that merits further

investigation. We formulate the first problem we wish to solve as:

• Problem 1. Investigate the BER performance of the MRC diversity receiver with M -

QAM under correlated Rayleigh and Rician fading channels with ICE, and characterize

the performance loss due to ICE and the choice of their parameters.

Our approach to this problem is to derive new DVs for the M -QAM MRC with ICE under

Gaussian (Rayleigh and Rician, because of the quadratures of the baseband equivalent channel

follow the Gaussian distribution) fading channels. By expressing the BER of the receiver in

terms of the DVs and using MGF-based performance analysis approach for Gaussian quadratic

forms, we derive exact and easy-to-compute analytical expressions for the BER of square and

rectangular M -QAM with ICE for independent and identical distributed (i.i.d.), independent

but not identical distributed (i.n.d.), as well as arbitrarily correlated Rayleigh and Rician

fading channels. The major contributions in this work include: (1) Deriving BER of the M -

QAM MRC receiver using the distribution of a new DVs, (2) Developing closed-form BER

expressions, taking into account the effect of ICE and other system design parameters for i.i.d

and i.n.d branches, as well as arbitrary correlated Rayleigh and Rician fading channels, and (3)
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Predicting whether an error floor will occur under given fading channel condition and channel

estimator parameters.

These results have their theoretical significance in that a closed-form expression for the

exact BER performance results for correlated diversity branches is presented that does not

involve major approximation or calculation of numerically unstable special functions. More

importantly, these results will have a significant impact on the design and analysis of practical

receivers. The results in this study are particularly well-suited to quantify and predict the exact

performance of the MRC combiner utilized at the receiver and will provide the system designers

a valuable tool to investigate how the different system parameters will affect the BER. For

example, one particular application of the study will aid the engineers in determining whether

there will be an error floor with a certain type of channel estimator used and its parameters

under any given channel conditions. This information is extremely helpful in that if the system

designers would predict the existence of an error floor beforehand, a lot of time and resources

can be saved by directing available system resources accordingly to avoid possible waste of

signal power on the region where error floor occurs or to avoid the existence of the error floor

all together by tuning the channel estimator parameters. Another possible application of the

BER result is to guide the system engineers in optimally distributing limited system resources

to provide the most reliable and efficient communication. One example is that with PSAM,

there will be a tradeoff between the number of pilot symbols and the number of data-bearing

symbols in a given block. The more are the pilot symbols used, the less are the channel

estimation errors and BER, but at the cost of reduced throughput. The results obtained in

this study will help choose an optimal frequency of pilot symbol insertion to maximize the

system throughput while maintaining a certain BER.

Performance of GSC under perfect CSI conditions has been studied in several papers in

the literature [34–36]. Intuitively, it makes more sense not to combine some of the weaker

branches under ICE conditions. The reason is that the lower the SNR on a particular branch,

the less accurate the channel estimation is, and consequently the less additional benefit can the

combiner provide. This is an issue of diminishing return of investment in combiner complexity,
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since the complexity to combine the strong and weak branches are the same. It would be

interesting to investigate the exact performance and complexity tradeoff for GSC receivers

under practical ICE considerations.

• Problem 2. Investigate the BER performance of the GSC diversity receiver with M -

QAM under generalized fading channels with ICE; characterize the performance loss due

to different channel estimators and the choice of their parameters; and investigate the

tradeoff between performance and complexity in the proposed scheme.

The main technique we used in solving this problem is based on the the idea to use the

effective SNR of the combined branches to obtain the BER performance results. By taking

this effective SNR based approach, we obtained the BER on Rayleigh, Rician as well as non-

Gaussian type, such as Nakagami-m, fading channels.

The major contributions in this work include: (1) Derivation of signal-constellation-dependent

effective SNRs with GSC and ICE, (2) Formulation of accurate BER expressions for square

and rectangular M -QAM with GSC and ICE based on MGF of the derived SNR under gener-

alized fading conditions with independent diversity branches, and (3) Provision of an accurate

analytical result for GSC performance using different modulations, different channel estimators

and different levels of GSC complexity (number of branches combined). The importance of

this work lies in the fact that under the ICE condition, combining all the diversity branches

may not be the most cost-benefit efficient solutions considering the tradeoffs. The results are

instrumental to system designers who want to know exactly how much performance gain there

will be by combining one extra diversity branch. As a matter of fact, as shown in Chapter

3, with a certain type of channel estimator configuration, combining all available diversity

branches (MRC) won’t have any significant performance gain (in terms of SNR gain for the

same BER) than only combining some of the branches (GSC), in spite of the added complexity

of the MRC combiners.

The broadcast nature of the wireless channels determines that the issue of multiuser com-

munication has its unique importance to wireless communication. More specifically, the issue

of multiuser scheduler design is one of the most important topics in this area that has the
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potential to drastically increase the total system throughput. In this thesis, we concentrate on

the problem of designing multiuser schedulers that can exploit the inherent multiuser diversity

gain.

We discussed in Section 1.4 that there are several multiuser scheduling schemes available

in literature [64–66,75,78,79]. All of them schedule a single user to monopoly all the available

power for transmission, in a TDMA fashion. The criterion to choose such a user is based

on its rank in terms of a chosen metric (instantaneous SNR, normalized SNR, or any other

metrics based on instantaneous or statistical channel conditions). An alternative signal space

division method is CDMA which can provide a practical benefit over TDMA scheme in that

it’s feasible to assign multiple users for simultaneous transmissions. For example, in CDMA

networks, scheduling parallel independent transmissions are feasible due to the availability of

multiple orthogonal (or quasi-orthogonal) spreading codes in a single time slot.

The design criterion of many existing multiuser scheduling algorithms is the multiuser

diversity gain measured in terms of Shannon information theoretic capacity gain or the SNR

gap. In practical wireless networks, the throughput for a given target packet error rate (PER)

or BER may be a more feasible performance metric. For example, with AMC the transmission

rate is discrete and upper-bounded with SNR; while for Shannon capacity, it’s unbounded.

Furthermore, it is desirable to have an efficient scheduling algorithm operating per time slot.

In this research, we consider the scenario of simultaneous multiuser transmissions under a

CDMA scheme, and propose a generalized selection multiuser diversity (GSMuD) scheme.

In this scheme, in each time slot (e.g. a packet duration) among all the L users awaiting

transmissions up to Nc (with Nc ≤ L) users with the largest SNRs are selected.

We also propose a sub-optimal yet efficient equal power allocation algorithm, which im-

poses a minimum-throughput-rate constraint on each selected user so that the low-efficiency

transmission is cut off and the power is re-allocated to users with stronger channels. The

power allocation algorithm needs to be implemented only once for the period that the mul-

tiuser channel statistics remain unchanged. We assign equal amount of power to all users

selected for transmission in this scheme, which apparently is not the optimal way of disputing
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power to provide maximal total throughput. It would be of interest to know the optimal way

of allocating total system power to selected users based on their channel conditions.

Though the SNR-ranking based multiuser scheduling is an efficient and promising tech-

nique, its performance (e.g., error rate and throughput) with adaptive modulation has not

been evaluated in the literature. A technical difficulty lies in the analysis of order statistics

for the ranked users. Furthermore, with minimum-throughput-rate power allocation being

included, the accurate analysis becomes even more difficult.

It would also be of interest to know how our proposed scheme works under practical con-

siderations, namely ICE. The channel information provided to the GSMuD scheduler won’t

be perfect, and ICE and anticipated feedback delay are unavoidable. Furthermore, in order

to fully evaluate the usefulness of the proposed scheme, several metrics related to multiuser

scheduling algorithm need to be evaluated. Among the most important of them are metrics

related to the fairness, such as the average channel access rate (AAR), the average access time

(AAT), and the average waiting time (AWT). It is also important to know how we would im-

prove the proposed GSMuD scheme to maintain better fairness by changing the way we select

users.

We thus propose the third major problem we wish to tackle in this thesis:

• Problem 3. Design a generalized selection multiuser diversity (GSMuD) scheme and

related power allocation scheme (optimal and sub-optimal). Evaluate the impact of ICE

on the scheduler’s performance. Propose a modified GSMuD scheme to provide better

access fairness for all users and analyze how different system parameters in the scheduler

affects the user channel access metrics.

The main novelties in our design of GSMuD lie in that we can accommodate more than

one user per time slot to maximize the total system throughput under AMC and generalized

fading channel models (Rayleigh, Rician, Nakagami-m, etc.), in systems where each user is

assigned one orthogonal channel. The approaches we used in our design and analysis of the

AMC thresholds, BER performance analysis and throughput calculation is based on obtaining

the marginal distribution of the effective SNR of the users selected for transmission.
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The major contributions in this thesis on solving Problem 3 include (1) Design of the

absolute-SNR (a-SNR)-based GSMuD scheduling algorithm and related sub-optimal equal

power allocation scheme, (2) Derivation of individual-rate and sum-rate for users under utiliza-

tion of AMC, (3) Construction and analysis of optimal power allocation scheme under GSMuD

scheduler, (4) Analysis of GSMuD performance under ICE considerations, and (5) Derivation

and analysis of channel access statistics under GSMuD scheme and propose a normalized-SNR

(n-SNR)-based ranking that improves user access fairness.

The significance of this work lies in that we propose a new multiuser scheduler that aims

to increase total system throughput under AMC scheme. The new scheduler can also accom-

modate multiple user’s traffic in the same time slot, unlike previously proposed SMuD scheme

that only allows a single user to monopolize the total system resources in a given time slot. We

also provide detailed discussion and modifications required on the proposed scheme to work

under practical considerations such as ICE and feedback delay. In the aspect of the accompa-

nying power allocation scheme, we proposed and analyzed both the statistical optimal power

allocation scheme and simple-to-implement equal power allocation scheme. To ensure that

our algorithm will provide a fair channel access opportunity for the users, we derived several

metrics that measures the extend of fairness for the proposed a-SNR and n-SNR-based ranking

GSMuD and discussed the relationship with the scheduler parameters.

Now we turn our attention to the Nakagami-m channel simulator. We identified in Section

1.5 that Nakagami-m channel model is widely used [98–102, 104, 105]. An efficient algorithm

to generate such channel coefficients is essential to accurately simulate such channel model for

wireless communication and signal processing algorithm development.

We observed that the existing methods introduced in Section 1.5 are not adequate. Both

methods in [95, 110] are only suitable for a certain range of m values where, in reality, m

parameter in Nakagami-m fading channels could be anywhere in the range of 0.5 ≤ m ≤ ∞.

The method proposed in [111] could account for all m in its range. We observed that there

are still several points that have not been addressed in the existing Nakagami-m channel

generation algorithms: (1) The property of independent real and imaginary parts of the gen-
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erated Nakagami-m fading channel realizations are not guaranteed in those schemes, which

may cause problems for the simulations verifying certain analytical results assuming they are

independent. (As in Rayleigh and Rician cases, where the channel tap coefficients are con-

sidered circular symmetric RVs), (2) The temporal autocorrelation property in the generated

Nakagami-m channel realization is not addressed explicitly and no methods are in place to en-

sure the generated sequence has the desired property, and (3) ambiguity regarding the correct

phase distribution of the generated Nakagami-m channel coefficients.

Phase distribution in Nakagami-m fading channel is recently derived in [112]. In [95, 110],

phase distribution is not explicitly addressed. In [111], the authors try to address the phase

distribution issue but the approach taken therein will not produce channel coefficients with

the correct phase distribution as prescribed in [112]. We observe that the phase characteristic

is an important aspect of the channel simulator.

Based on the above observations, we propose the last problem we will solve in this thesis:

• Problem 4. Design a Nakagami-m fading channel simulator that produces Nakagami-m

distributed channel coefficients, with mutually independent quadrature parts, with arbi-

trary prescribed power spectrum, and with the correct phase distribution.

To design such a simulator that satisfies the prescribed requirements, our intuition is to

consider first of how to obtain the channel coefficients that follows the Nakagami-m distribu-

tion. In our design, we envisioned that by using inverse-CDF approaches, we can turn RVs

that follows any arbitrary distribution into RVs that follow the Nakagami-m distribution. We

generate the Rayleigh fading channel coefficients as the first step, in that the in-phase and

quadrature part of them are Gaussian distributed and relatively easy to generate. We then

mapped the in-phase and quadrature parts of the baseband-equivalent channel coefficients

independently into the Nakagami-m distributed channel coefficients. We preserved the inde-

pendence of the in-phase and quadrature part of the channel coefficients, which guarantees that

the resulting phase distribution would follow the theoretical results given in [112]. To make

sure the generated sequence fits any prescribed power spectrum density, we devised gradient

search algorithms that find the mapping of the autocorrelation functions between the Rayleigh
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channel coefficients and the generated Nakagami-m channel coefficients. By generating the

Rayleigh sequence with the calculated autocorrelation function, the simulator will output the

Nakagami-m sequence with the desired autocorrelation function.

In summary, the major contributions of our work include the following. First we proposed

a novel Nakagami-m fading channel simulator that generates sequences that satisfy (1) proper

phase distribution, (2) arbitrary power spectrum properties, (3) any m parameter and signal

power, and (4) independent in-phase and quadrature parts. Secondly, we independently verified

by simulation, the correctness of the phase distribution proposed in [112], thus solved the phase

ambiguity problem discussed in [111].

Throughout this chapter, we use the superscript ∗ to denote the complex conjugate.

E[x] and var {x} are the expected value and the variance of x, respectively, and sign(x) = 1 x ≥ 0

−1 x < 0
is the sign of x. N(µ,Σ) (and CN(µ,Σ)) denotes the Gaussian (and complex

Gaussian) distribution with mean µ and variance Σ, respectively.
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CHAPTER 2. ACCURATE PERFORMANCE ANALYSIS OF QAM

MRC RECEIVERS WITH IMPERFECT CHANNEL ESTIMATION

2.1 Introduction

High rate, high spectrum efficiency communication is the basis for future generation of

wireless communication systems. Bandwidth has always been a very limited and expensive

resource especially when the system is providing high date rate services to a large amount

of users. QAM is a widely used modulation scheme that can provide high date rate and

high spectrum efficiency with moderate implementation complexity compared to some lower-

efficiency modulation schemes. The performance analysis of QAM communication system

has always been a classic communication problem and has provided valuable information on

communication system design and implementation.

M -QAM system structure and performance are extensively studied in several books [6, 9,

125]. The symbol error probability (SER) of M -QAM system is relatively easy to calculate

and exact results can be found in common communication textbooks. The BER performance

has also been investigated by several authors. The exact BER for 16-QAM and 64-QAM in an

additive white Gaussian noise (AWGN) channel is derived in [4]. However, the BER results

for M -QAM when M is large are usually given in approximation terms. Cho and Yoon [14]

proposed an exact and general closed form BER expression of non-diversity M -QAM with

arbitrary constellation size under AWGN channel and Gray code bit mapping assumption.

It’s valid to point out that the approach therein is based on a recursive relation between the

BER and the signal amplitude levels and the complimentary error function, which is only

immediately valid for the AWGN case but can be extended to the fading channels with CSI.

Diversity reception technique is one of the most widely used methods to mitigate the effect
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of multipath fading at the receiver by combining the multiple replicas of the transmitted

signal. MRC provides maximal output SNR if different branches have the same noise statistics

and thus maximal performance gain. MRC receiver requires CSI at the receiver and some of

existing performance analysis [3, 14] are based on the assumption that perfect estimation of

this information is available. In [3], the authors derived the bit error rate (BER) for QAM

with MRC in a Rayleigh fading channel. The formula derived therein is obtained by averaging

the BER of QAM in AWGN channel over a chi-square distribution with 2L degrees of freedom.

The process of deriving the formula involves the integration of an infinite series expansion of

the erf function which is not strictly a closed form expression and will introduce unwanted

numerical instability for certain cases. Further more, the results obtained assumed perfect CSI

case and are not readily expendable to more practical case, where the channel estimates cannot

be perfect in fading channels, and thus the adverse effect of ICE on the BER performance must

be taken into account.

Performance results for special cases of ICE are present such as BER results for MRC

diversity square M -QAM with PSAM in i.i.d Rayleigh [18] and Rician [19] fading channels

and an integral form BER expression for 16-QAM with MRC and ICE in a Rayleigh fading

channel with i.i.d diversity branches [17]. We note that the analysis in the existing literatures

are based on the assumption of independence among all diversity branches. In many practical

scenarios, the receiver diversity branches have non-equal signal gains, and they may even be

arbitrarily correlated.

An approximate expression for the BER of 16-QAM and 64-QAM with ICE and specifically

with PSAM channel estimator over Rayleigh fading channels is proposed in [13]. In [10], an

approximate BER for M -QAM with PSAM was obtained for a Rayleigh fading channel. In [11],

the BER for the minimum mean-squared-error (MMSE)-based channel estimator for a non-

diversity Rician fading channel was derived. In [12], the exact BERs for pulse amplitude

modulation (PAM) and QAM signals in Rayleigh and Rician fading channel with ICE were

obtained, respectively, by deriving the received data’s probability density function (PDF) and

expressing the BER in integrals of the obtained PDF. Though their results are applicable
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to channel estimators whose output channel estimates are complex Guassian distributed, the

closed-form integrals are only obtained for 16 QAM with 1 or 2 diversity branches in the

Rayleigh case and non-diversity case in Rician channels. In [15, 16] a SER formula involving

a two-fold integral was developed for arbitrary two-dimensional signalling formats in a non-

diversity Rician fading channel. In [17], the authors provided a BER expression (in the form

of a two-fold integral of a parabolic cylinder function) for 16-QAM with MRC and ICE in a

Rayleigh fading channel with i.i.d. diversity branches. The BER expressions derived in [13,17]

are obtained by evaluating the effective SNRs in terms of estimation-error-rotated signal in-

phase and quadrature components and the decision boundaries.

Recently, closed-form BER expressions for MRC diversity square M -QAM with PSAM in

i.i.d. Rayleigh and Rician fading channels with arbitrary number of diversity branches were

derived in [18] and [19], respectively. However their results are only valid for independent

and identically distributed (i.i.d.) fading channels. In many practical scenarios, the receiver

diversity branches have non-equal signal gains, and they may even be arbitrarily correlated.

The approaches used in [18, 19] to find the BER expressions were to compare the receiver

output with decision boundaries using a characteristic function method. The authors in [2]

extended this approach to find BER expression of an arbitrary square/ rectangular QAM with

MRC and channel estimation error, applicable to square/rectangular M -QAM constellation

with MRC and ICE in i.n.d. Rayleigh fading channels. However, the exact closed-form result

for i.n.d Rayleigh fading with MRC and ICE is not presented in the paper but rather only a

general approach or how to obtain the closed-form results by comparing the receiver output

with decision boundaries using an MGF-based method. It’s valid to point out that the proposed

approach in [2] is only applicable to Rayleigh fading and not readily applicable to Rician case.

In this chapter, we will present an accurate and closed-form performance result for diversity

M -QAM with PSAM and MRC combiner valid for correlated fading channels (including arbi-

trary spatial and temporal fading correlation and noise correlation) that has not been obtained

yet in the literature, despite its theoretical importance and practical relevance.
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2.2 System and Signal Model

2.2.1 Signal Model

We use (I, J)-QAM to denote the general rectangular QAM modulation with I and J signal

levels in the horizontal and vertical directions, respectively, where I, J ∈ {2n}, n = {1, 2, . . .}.

The total number of signal levels M is given by M = I × J . We denote the data signals

received in the ith symbol interval over all L diversity branches by

y(i) = c(i)d(i) + n(i) (2.1)

where d(i) =
√
Ea(αh+jαv) is anM -QAM symbol, with j =

√
−1, αh ∈ {−I+1, . . . ,−1, 1, . . . ,

I−1}, and αv ∈ {−J+1, . . . ,−1, 1, . . . , J−1}. Ea is used to normalize the data symbol energy

to unity, i.e., Ed = E[|d(i)|2] = 1. For square M -QAM Ea = 3
2(M−1) ; and for rectangular (I, J)-

QAM Ea = 3
I2+J2−2

[14]. c(i) = [c1(i), . . . , cL(i)]> is the channel-coefficient vector for the L

branches. In Rician fading channels, c(i) can be written as c(i) = µc(i) + cf (i), where µc(i) =

E[c(i)] = [µc1(i), . . . , µcL(i)]> and cf (i) = [cf1(i), . . . , cfL(i)]> are the line-of-sight (LOS) and

diffuse components of c(i), respectively. At the lth branch, µcl(i) = |µcl(i)|e
j2π(fdl+fol )iTs+θl ,

where fdl is the Doppler shift of the LOS component, fol is the frequency offset, θl is a random

residual phase, and Ts is the symbol duration. The Rician factor is defined as Kl = |µcl(i)|2/σ2
cl

,

where σ2
cl

= E[|cfl(i)|2] is the variance of the diffuse fading component of the lth branch.

The normalized temporal channel correlation coefficient at the lth branch is defined as

R̃cl(n) = E[cfl(i)c
∗
fl

(i−n)]/σ2
cl

. For Clarke’s fading spectrum [121,122], R̃cl(n) = J0(2πnBflTs)

ej2πfolnTs ; and for the Gaussian fading spectrum, R̃cl(n) = exp(−(πnBflTs)
2)ej2πfolnTs , where

J0(x) is the zeroth order Bessel function and Bfl is the Doppler fading bandwidth of the diffuse

component, at the lth branch.

The additive background noise vector, n(i) = [n1(i), . . . , nL(i)]>, is a zero-mean circularly

symmetric complex Gaussian process, with average power E[|nl(i)|2] = N0, l = 1, . . . , L. In

(2.1), n(i) may be temporally and spatially correlated. The average bit SNR of the lth branch

is given by γ̄b,l = E[|cl(i)|2]/N0 = (|µcl(i)|2 + σ2
cl

)/N0.
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2.2.2 PSAM-Based Channel Estimators

PSAM-based channel estimation is widely adopted in actual wireless systems, due to its

applicability to various channels and/or modulation schemes, and its robustness and low

complexity. Instead of using a long sequence of training symbols at the beginning of a

block of transmission, a pilot symbol is inserted into the data stream every P symbol in-

tervals in the PSAM we consider. To estimate the channel coefficient vector c(i) for the

desired symbol d(i), F pilot symbols are employed which may be written as an F × 1 vector

dPS = [d(i − PF1 + ioff), . . . , d(i − P + ioff), d(i + ioff), . . . , d(i + P (F2 − 1) + ioff)]>, where F1

and F2 (with F1 + F2 = F ) are the numbers of pilot symbols on the left and right sides of

d(i), respectively, and ioff (ioff = 1, 2, . . . , P − 1) is the offset of the desired symbol d(i) to the

closest pilot symbol on its right side. The received signals at the pilot symbols’ positions for

estimating channel c(i) may be written as an FL× 1 vector yPS, expressed in a compact form

as

yPS = (diag(dPS)⊗ IL)cPS + nPS, (2.2)

where ⊗ denotes the Kronecker product [22], cPS = [c>(i−PF1 + ioff), . . . , c>(i+ ioff), . . . , c>(i+

P (F2− 1) + ioff)]> and nPS = [n>(i−PF1 + ioff), . . . ,n>(i+ ioff), . . . ,n>(i+P (F2− 1) + ioff)]> are

the channel gain and noise components of all the L branches at the pilot symbols’ positions,

respectively.

Without loss of generality, we assume dPS =
√
PPS1L×1, where PPS is the transmitted power

of the pilot symbols, and may be different from Pd, the transmitted power of the data symbols.

Thus, equation (2.2) simplifies to yPS =
√
PPScPS + nPS.

The channel estimate for c(i), denoted as ĉ(i), is given by ĉ(i) = WyPS, where W =

[w>1, . . . ,w
>
L]> is an L× FL channel estimator filter matrix. ĉl(i) = wlyPS is true, where wl is

the filter (lth row of W) to estimate the channel gain cl(i).

Although the analysis of this chapter is applicable to any linear channel estimator W, we

outline two types of channel estimators below which have attracted particular research interest.

Sinc-CE: For the sinc-interpolator-based CE with rectangular window, we have Wsinc =

[hsinc(−PF1 + ioff), . . . , hsinc(ioff), . . . , hsinc(P (F2−1) + ioff)]⊗ IL, where hsinc(x) = sin(πx)/(πx).
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A Hamming window may also be employed. Our numerical results in Section 2.5.2 show

that the relative performance of rectangular and Hamming windows depends on the operating

channel and system parameters.

MMSE-CE: We derive the linear MMSE channel estimator (MMSE-CE) for the PSAM in

generalized Rician fading channels below. A detailed exposition here is necessary to elaborate

the relation between the channel estimator and the BER performance of M -QAM. By using the

Wiener filter [23], the MMSE-CE is given by Wmmse = Rc,yPSR−1
yPS

, where Rc,yPS = E[c(i)yHPS]

is the cross-correlation matrix between c(i) and yPS (taking into account the LOS component),

and RyPS = E[yPSyHPS] the auto-correlation matrix of yPS. After some manipulations, we can

show that

Rc,yPS =
√
PPS[Rc(PF1 − ioff), . . . ,Rc(−ioff) . . . ,Rc(−P (F2 − 1)− ioff)] (2.3)

and RyPS is given by (2.4):

RyPS =



PPSRc(0) + Σn(0) PPSRH
c (P ) + ΣH

n (P ) . . .

PPSRc(P ) + Σn(P ) PPSRc(0) + Σn(0) . . .

...
. . .

PPSRc(P (F − 1)) + Σn(P (F − 1)) . . . PPSRc(0) + Σn(0)


(2.4)

where Rc(m) = E[c(i)cH(i−m)] = Σc(m)+µc(i)µHc (i−m) is the spatial-temporal correlation

matrix of {c(i)}i=0,1,... (including the LOS components). Σc(m) = E[cf (i)cHf (i −m)] is the

channel spatial-temporal covariance matrix. Assuming the noise n(i) is a zero-mean process,

Σn(m) = E[n(i)nH(i−m)] is defined as the noise spatial-temporal covariance matrix. For i.i.d.

white noise, we obtain that Σn(0) = N0IL, and Σn(m) = 0L×L, when m 6= 0. In summary, our

channel model includes arbitrary joint spatial-temporal fading correlation, noise correlation,

and Rician fading. Thus, it is much more general than the i.i.d. Rayleigh and Rician fading

models studied in [17–19].
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2.2.3 Channel Estimation Error Model

The estimate for channel vector c(i) is denoted by ĉ(i) = [ĉ1(i), . . . , ĉL(i)]>. For i.i.d.

signal branches, without loss of generality, we assume E[|ĉl(i)|2] = σ2
ĉ , for all l. Let the

normalized correlation coefficient between ĉl(i) and cl(i) be defined as ρ = E[ĉ∗l (i)cl(i)]/[σcσĉ].

For i.n.d signal branches, define the normalized correlation coefficient ρl for each branch as

ρl = E[ĉ∗l (i)cl(i)]/[σclσĉl ]. In general, ρ or ρl is a function of the average SNR (ASNR), the

fading channel parameter (e.g. fading power spectra, the Doppler fading bandwidth) and the

PSAM parameters (e.g. P , F , and ioff). A popular channel estimation error model for PSAM

and MMSE-CE is given by [10,11]

cl(i) = ĉl(i) + zl(i), (2.5)

where {zl(i)}Ll=1 are the i.i.d. channel estimation errors for i.i.d branches independent of

{ĉl(i)}Ll=1, and follow a complex Gaussian distribution with zero mean and variance σ2
z =

(1−|ρ|2)σ2
c . We obtain this result by using the orthogonality principle between ĉl(i) and zl, and

we also get the relationship that σ2
ĉ = |ρ|2σ2

c . For the ideal MMSE-CE, ρ is real-valued. The

model (2.5) is also applicable for some non-MMSE channel estimators (e.g. sinc-interpolators),

yielding an accurate approximation of the BER. The explicit relation between ρ, channel model

parameters and different channel estimator parameters will be shown in Section 2.4.2.2.

2.2.4 Symbol Detection

By using the estimated channel vector ĉ(i) to detect d(i), the complex decision variable for

MRC is given by D̃ = ĉH(i)y(i)/[ĉH(i)ĉ(i)] =
∑L

l=1 ĉ
∗
l (i)yl(i)/

∑L
l=1 |ĉl(i)|2. The transmitted

symbol d(i) can be recovered by comparing D̃ with the horizontal and vertical QAM decision

boundaries [13,14,17].

2.3 BER Formulation for M-QAM

We derive the BER for horizontal and vertical PAM first, and then extend the result to

both square and rectangular M -QAM.
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2.3.1 I-PAM

Consider horizontal I-PAM with d(i) = αh
√
Ea, where Ea = 3

I2−1
. For I = 4, the two bits

b1b2 are Gray-coded and mapped to four possible transmitted symbols. Let D̃R = Re(D̃) be

the real part of D̃. The error probabilities for b1 and b2 are, respectively, given by

P4,H(1) =
1
2

[P{D̃R < 0|αh = 3}+ P{D̃R < 0|αh = 1}],

P4,H(2) =
1
2

[P{D̃R < 2a|αh = 3} − P{D̃R < −2a|αh = 3}

+P{D̃R < −2a|αh = 1}+ P{D̃R > 2a|αh = 1}],

where a is given by a =
√
Ea, and P{A|B} denotes the conditional probability of event A

given event B.

For vertical 4-PAM with d(i) = jαv
√
Ea, let D̃I = Im(D̃) be the imaginary part of D̃. The

BERs for b1, b2 can be obtained as P4,V (1) = 1
2 [P{D̃I < 0|αv = 3}+ P{D̃I < 0|αv = 1}], and

P4,V (2) = 1
2 [P{D̃I < 2a|αv = 3} − P{D̃I < −2a|αv = 3} +P{D̃I < −2a|αv = 1} + P{D̃I >

2a|αv = 1}]. For horizontal and vertical PAM, respectively, let us define the conditional BERs

as

P̃H(βn|αn) = P{D̃R < aβn|d(i) = aαn} (2.6)

P̃V (βn|αn) = P{D̃I < aβn|d(i) = jaαn}. (2.7)

where βn is an integer specifying the decision boundary. Thus, we obtain P4,H(1) = 1
2 [P̃H(0|3)+

P̃H(0|1)] and P4,H(2) = 1
2 [P̃H(2|3) − P̃H(−2|3) + P̃H(−2|1) + 1 − P̃H(2|1)]. Here we use the

P4,H(1) to denote the probability that the MSB (b1 in Fig. 2.1) is decoded wrong and the term

P̃H(β|α) denotes the probability that the received signal falls below the decision boundary β

when the transmitted constellation point is α. For example, the probability P4,H(1) can be

obtained by averaging the probability of the MSB being wrongly decoded when α = −3a,−a, a,

and 3a is transmitted. Due to the symmetrical nature of the constellation points and decision

boundaries, we only need to calculate for the average provability when two points a and 3a are
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Table 2.1 Coefficients for BER calculation for 4-PAM

n 1 2 3 4 5 6
βn 2 -2 -2 2 0 0
αn 3 3 1 1 3 1
wn 1 -1 1 -1 1 1

transmitted, which is P̃H(β|α) for α = a, and α = 3a respectively. β = 0 for both cases and

we drop a in α and β without causing any confusions.

Here, for deriving P4,H(2) we used the equality that P{D̃R > 2a|αh = 1} = 1 − P{D̃R <

2a|αh = 1} = 1 − P̃H(2|1). We can express the average BERs for horizontal and vertical

4-PAM, respectively, as

P̄4,H =
1
2

[P4,H(1) + P4,H(2)]

=
1
4

[C4 +
N4∑
n=1

wnP̃H(βn|αn)] (2.8)

P̄4,V =
1
4

[C4 +
N4∑
n=1

wnP̃V (βn|αn)] (2.9)

where C4 = 1, N4 = 6, and the coefficients wn, βn, and αn are given in Table 2.1.

Figure 2.1 Decision boundaries and bit-symbol mapping (b1, b2) for
4-PAM. B̃1 and B̃2 denote the bit decision boundaries for b1
and b2, respectively.

For horizontal 8-PAM, the bit-symbol mapping is shown by Fig. 2.2. Using the definition
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in (2.6), we can express the BERs for the bits b1, b2, and b3, respectively, as

P8,H(1) =
1
4

[P̃H(0|1) + P̃H(0|3) + P̃H(0|5) + P̃H(0|7)], (2.10)

P8,H(2) =
1
4

[2 + P̃H(4|5)− P̃H(−4|5) + P̃H(4|7)− P̃H(−4|7)

+P̃H(−4|3) + P̃H(−4|1)− P̃H(4|3)− P̃H(4|1)], (2.11)

P8,H(3) =
1
4

[
2 + P̃H(6|7)− P̃H(2|7) + P̃H(−2|7)− P̃H(−6|7)− P̃H(6|5) + P̃H(2|5)

−P̃H(−2|5) + P̃H(−6|5)− P̃H(6|3) + P̃H(2|3)− P̃H(−2|3) + P̃H(−6|3)

−P̃H(2|1) + P̃H(6|1) + P̃H(−2|1)− P̃H(−6|1)
]
.

Figure 2.2 Decision boundaries and bit-symbol mapping (b1, b2, b3) for
8-PAM. B̃1, B̃2, and B̃3 denote the bit decision boundaries for
b1, b2, and b3, respectively.

The average BER for horizontal 8-PAM can be obtained as

P̄8,H =
1
3

[P8,H(1) + P8,H(2) + P8,H(3)] =
1
12

[C8 +
N8∑
n=1

wnP̃H(βn|αn)] (2.12)

where C8 = 4 and N8 = 28, and the wn, βn, and αn are given in Table 2.2, respectively.

Similarly, using the symmetry, it follows that the average BER for vertical 8-PAM is P̄8,V =

1
12 [C8 +

∑N8
n=1wnP̃V (βn|αn)].

Similar results for 16-PAM are obtained and given in the Appendix 2.A.

We underscore that when both c(i) and ĉ(i) are circularly symmetric complex Gaussian

processes, as they usually are, we have that P̄I,H = P̄I,V , for I = 2n, n ∈ {1, 2, 3, . . .}. However,
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Table 2.2 Coefficients for BER calculation for 8-PAM

n βn αn ωn n βn αn ωn
1 0 1 1 15 -2 7 -1
2 0 3 1 16 -6 7 -1
3 0 5 1 17 6 5 -1
4 0 7 1 18 2 5 1
5 4 5 1 19 -2 5 -1
6 -4 5 -1 20 -6 5 1
7 4 7 1 21 6 3 -1
8 -4 7 -1 22 2 3 1
9 -4 3 1 23 -2 3 -1
10 -4 1 1 24 -6 3 1
11 4 3 -1 25 2 1 -1
12 4 1 -1 26 6 1 1
13 6 7 1 27 -2 1 1
14 2 7 -1 28 -6 1 -1

when either c(i) or ĉ(i) are not circularly symmetric (e.g. for an improper process [24]), the

detection error probabilities for the real and imaginary parts of d(i) may not be equal, i.e.,

P̄I,H 6= P̄I,V . Therefore, our framework is valid for both proper and improper fading processes.

2.3.2 M-QAM

For rectangular (I,J)-QAM (with M = I × J), let us define the conditional BERs con-

ditioned on the transmitted symbol d(i) = (αh + jαv)
√
Ea, for the horizontal and vertical

components of QAM as

P̃H(βn|αh, αv) = P{D̃R < βn ·
√
Ea|d(i) = (αh + jαv)

√
Ea}, (2.13)

P̃V (βn|αh, αv) = P{D̃I < βn ·
√
Ea|d(i) = (αh + jαv)

√
Ea}. (2.14)

Note that for Gray-coded (I,J)-QAM, the decision boundaries for horizontal signals (real

part of d(i)) are independent of the vertical signal levels (imaginary part of d(i)), and vice

versa, see e.g. [13, 14]. Thus, we can directly extend the BER result for PAM obtained in
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Subsection 2.3.1 to the case of M -QAM, and obtain

P̄I,H =
2

I log2 I
[CI +

1
J

J∑
m=1

NI∑
n=1

wnP̃H(βn|αn, J − 2m+ 1)], (2.15)

P̄J,V =
2

J log2 J
[CJ +

1
I

I∑
m=1

NJ∑
n=1

wnP̃V (βn|I − 2m+ 1, αn)], (2.16)

where C4 = 1, C8 = 4 and C16 = 12, N4 = 6, N8 = 28 and N16 = 120, respectively. When I

(or J) = 4, 8 and 16 respectively, the values of {wn, βn, αn} have to be selected from Table

2.1, 2.2 and 2.3 respectively. The average BER is given by

P̄M =
1

log2(I · J)
[(log2 I)P̄I,H + (log2 J)P̄J,V ]. (2.17)

We emphasize that for non-Gray-coded bit-mappings, our results are applicable with slight

modifications. In detail, equation (2.15) has to be rewritten as

P̄I,H =
2

I log2 I

1
J

J∑
m=1

[
CI(m) +

NI∑
n=1

wn(m)P̃H(βn(m)|αn(m), J − 2m+ 1)

]
(2.18)

where CI(m), wn(m), βn(m), and αn(m) are now dependent on the signal level m (m = 1, . . . J)

in the vertical direction, and we just need to tabulate them for each m, following the same

procedure as for generating Table 2.1, 2.2 and 2.3. Similar steps can be taken to re-evaluate

P̄J,V . Thus, our new result is applicable to arbitrary symbol-bit mappings.

When both c(i) and ĉ(i) are circularly symmetric Gaussian processes, we obtain that

P̃H(βn|αn, αm) = P̃V (βn|αm, αn). For Gray-coded square M -QAM, (2.17) simplifies to

P̄M =
4√

M log2M

C√M +
1√
M

√
M∑

m=1

N√M∑
n=1

wnP̃H(βn|αn,
√
M − 2m+ 1)

 . (2.19)

When M = 16, 64 and 256, the values of {wn, βn, αn} again have to be selected from Table

2.1, 2.2 and 2.3, respectively. Next, we re-formulate the conditional BERs P̃H(βn|αh, αv)

and P̃V (βn|αh, αv) for QAM in terms of the distribution of some new DVs. P̃H(βn|αh) and

P̃V (βn|αv) for PAM can be obtained as special cases.

We note that in [14] the BER of M -QAM is obtained by extending the result of I-PAM

to QAM. The result in [14] is valid for the case of perfect CSI and a non-fading channel, and

is based on a recursive relation (valid for Gray-coded bit mapping) between the BER and the
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signal amplitude levels. For the case of ICE the SNR penalty due to ICE is a function of the

signal amplitude, and thus such a recursive relation [14] is no longer applicable, and the BER

analysis method in [14] cannot be straightforwardly extended to the ICE case. In comparison,

we used a different framework by evaluating the distribution of some new decision variables,

and our result includes the effects of both generalized fading and ICE.

2.4 Evaluating the BERs

We now evaluate the exact BER results by exploiting the property of the DV we derive. We

use the MGF-based approach, and find the easy-to-compute BER expressions in the form of

an infinite integral of the obtained MGF for both i.i.d, i.n.d and arbitrary correlated Rayleigh

and Rician fading channels for MRC diversity combiner. The results are easily computed

numerically and could be further derived into a closed-form using methods similar to what is

given in [29].

2.4.1 Reformulation of the BERs

By definition, P̃H(βn|αh, αv) = P{D̃R < βn ·
√
Ea|d(i) = (αh + jαv)

√
Ea}. Using the

equalities D̃R = Re(
∑L

l=1 ĉ
∗
l (i)yl(i))/

∑L
l=1 |ĉl(i)|2 and yl(i) = cl(i)

√
Ea(αh + jαv) + nl(i), we

obtain P̃H(βn|αh, αv) = P{DH(βn|d(i)) < 0}, where DH(βn|d(i)) is a new DV defined as

DH(βn|d(i)) = Re

(
L∑
l=1

ĉ∗l (i)yl(i)

)
−
√
Eaβn

L∑
l=1

|ĉl(i)|2. (2.20)

Similarly, we define the conditional BER for the vertical signal components as P̃V (βn|αh, αv) =

P{DV (βn|d(i)) < 0}, where

DV (βn|d(i)) = Im

(
L∑
l=1

ĉ∗l (i)yl(i)

)
−
√
Eaβn

L∑
l=1

|ĉl(i)|2.

Below, we drop the symbol index i of d(i) when no confusion arises. To evaluate the cumulative

distribution functions (CDFs) P{DH(βn|d) < 0} and P{DV (βn|d) < 0}, we derive the MGFs

of the new DVs DH(βn|d) and DV (βn|d), and then use the inverse Laplace transform to obtain

these CDFs.



www.manaraa.com

31

2.4.2 Evaluating the Distributions of the New DVs

We first obtain the CDFs of the new DVs for generalized correlated Rician fading channels,

and then discuss special-case results for Rayleigh fading and independent diversity branches.

2.4.2.1 Rician Fading Channels

We study the general case of arbitrary spatial and temporal correlations between diversity

branches and between different symbol intervals.

To obtain the MGFs of DH(βn|d) and DV (βn|d), we express them in Gaussian quadratic

forms as

DH(βn|d) = vH(d)QH(βn)v(d)

DV (βn|d) = vH(d)QV(βn)v(d)

where

v(d) =

 ĉ(i)

c(i)d+ n(i)

 ,
QH(βn) =

 −βn · aIL 0.5IL

0.5IL 0L×L

 ,
QV (βn) =

 −βn · aIL −0.5jIL

0.5jIL 0L×L

 .
Using a property of Gaussian quadratic forms [25,26], we obtain the MGF of DH(βn|d) in

Rician channels as

ΦDH(βn|d)(s) =
exp(v̄H(d)[Q−1

H (βn)s−1 −Σv(d)]−1v̄(d))
det(I2L − sΣv(d)QH(βn))

, (2.21)

where v̄(d) and Σv(d) are the mean vector and the covariance matrix of v(d), respectively.

The procedure to find v̄(d) and Σv(d) for generalized Rician fading and any linear channel

estimators is outlined below. Let ĉ(i) = µ̂c(i) + ĉf (i), where µ̂c(i) and ĉf (i) are the LOS and

diffusive component vectors of ĉ(i), respectively.
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The mean and the auto-covariance matrix of v(d) are, respectively, given by

v̄(d) = [µ̂>c(i),µ
>
c(i)d]> (2.22)

Σv(d) =

 Σĉ,ĉ Σĉ,cd
∗

ΣH
ĉ,cd Σc,c|d|2 + Σn(0)

 (2.23)

where Σĉ,c = E[ĉf (i)cH
f (i)] is the cross-covariance matrix between ĉ(i) and c(i), Σĉ,ĉ =

E[ĉf (i)ĉH
f (i)], and Σc,c = E[cf (i)cH

f (i)]. Note that Σĉ,ĉ, Σĉ,c, and Σc,c completely model the

effect of ICE on the diffuse channel components, and the signal correlation between different

branches.

Next, we show how to evaluate Σv(d) and v̄(d) for a given channel estimator W. Let

cPS = µPS + cfPS
, where µPS and cfPS

are the vectors of the LOS and diffuse components of

cPS, respectively. Then, yPS =
√
PPSµPS + ỹPS, where ỹPS =

√
PPScfPS

+ nPS is a zero-mean

vector. We can show that

µ̂c(i) =
√
PPSWµPS (2.24)

Σĉ,c = E[WỹPScHf (i)]

= WE[(
√
PPScfPS

+ nPS)cHf (i)] = WΣH
c,yPS

(2.25)

Σĉ,ĉ = E[W(
√
PPScfPS

+ nPS)(
√
PPScfPS

+ nPS)HWH ]

= WΣyPSWH (2.26)

where Σc,yPS = E[cf (i)ỹHPS] is the cross-covariance matrix between c(i) and yPS, and ΣyPS =

E[ỹPSỹHPS] is the auto-covariance matrix of yPS. They can be obtained by replacing Rc(m) in

(2.3) and (2.4) with Σc(m), respectively, as shown by the equations (2.27), (2.28).

Σc,yPS =
√
PPS[Σc(PF1 − ioff), . . . ,Σc(−ioff), . . . ,Σc(−P (F2 − 1)− ioff)] (2.27)
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ΣyPS =



PPSΣc(0) + Σn(0) PPSΣH
c (P ) + ΣH

n (P ) . . .

PPSΣc(P ) + Σn(P ) PPSΣc(0) + Σn(0) . . .

...
. . .

PPSΣc(P (F − 1)) + Σn(P (F − 1)) . . . PPSΣc(0) + Σn(0)


(2.28)

A special case is discussed below. For the case of white noise, independent diversity

branches, and identical fading correlation functions at all the branches (i.e., R̃c1(n) = . . . =

R̃cL(n) = R̃c(n)), we have

Σc,yPS =
√
PPS[R̃c(PF1 − ioff), . . . , R̃c(−ioff), . . . , R̃c(−P (F2 − 1)− ioff)]⊗ diag(σ2

c1 , . . . , σ
2
cL

),

and

ΣyPS = N0IFL + PPS



1 R̃∗c(P ) . . . R̃∗c(P (F − 1))

R̃c(P ) 1 . . . ,

...,
. . .

R̃c(P (F − 1)) . . . 1


⊗ diag(σ2

c1 , . . . , σ
2
cL

).

Applying (2.22) – (2.26) to (2.21), we can evaluate the MGF of the new DV. The CDF

P{DH(βn|d) < 0} can be evaluated by the inverse Laplace transform of the MGF, as shown

by

P{DH(βn|d) < 0} =
1

2π
Re
(∫ c+j∞

c−j∞

ΦDH(βn|d)(−s)
js

ds

)
(2.29)

where c is a small real constant in the convergence region [27]. The MGF of ΦDV (βn|d)(s) can

be obtained by replacing QH(βn) with QV (βn) in (2.21), and the CDF P{DV (βn|d) < 0} can

be obtained by replacing ΦDH(βn|d)(−s) with ΦDV (βn|d)(−s) in (2.29).

Equation (2.29) can be evaluated by a Gauss-Chebyshev quadrature (GCQ) formula [28],

P{DH(βn|d) < 0} =
1

2N

N∑
n=1

Φ̂
(

(2n− 1)
2N

π

)
+ R̂N ,
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where Φ̂(θ) = ΦDH(βn|d)(−c − jc tan(θ/2))(1 − j tan(θ/2)), and R̂N is a residual term which

vanishes for N → ∞. The GCQ formula with (2.17)–(2.19) gives accurate BER results for

M -QAM in arbitrary Rician fading channels taking ICE into account.

2.4.2.2 Rayleigh Fading Channels

The results for arbitrarily correlated branches in Rayleigh channels can be obtained using

(2.21) and (2.29) by setting v̄(d) to a zero vector. Below, we consider the case of independent

diversity branches.

I.N.D. Diversity

To gain more insight into the relation between channel estimation accuracy and BER

performance of M -QAM with PSAM, we derive the BER formula for i.n.d. diversity Rayleigh

channels. To our knowledge, an exact BER result for MRC M -QAM in i.n.d. Rayleigh fading

channels is not available. Define the normalized correlation coefficient ρl between cfl(i) and

ĉfl(i) as

ρl = E[ĉ∗fl(i)cfl(i)]/[σclσĉl ], (2.30)

where E[ĉ∗fl(i)cfl(i)] = [Σĉ,c]l,l, σĉl =
√

[Σĉ,ĉ]l,l, and Σl,l is the (l, l)-th entry of matrix Σ. Thus,

we obtain that ρl = 1
σcl

[Σc,yPSWH ]l,l/
√

[WΣyPSWH ]l,l, which is a function of the estimation

filter W (which may be non-MMSE-CE) and various fading channel parameters.

For i.n.d. Rayleigh fading branches, the MGF for the DV DH(βn|d) is given by

ΦDH(βn|d)(s) =
L∏
l=1

det(I2 − sΣvl(d)QH,2(βn))−1,

where QH,2(βn) =

 −aβn 0.5

0.5 0

 and Σvl(d) =

 σ2
ĉl

ρ∗l σĉlσcld
∗

ρlσĉlσcld σ2
cl
|d|2 +N0

. Let the two

eigenvalues of Σvl(d)QH,2(βn) be denoted by λ±l (βn, d). Since the signals in all the L branches

are independent, all the poles of ΦDH(βn|d)(s) are given by {1/λ−l (βn, d), 1/λ+
l (βn, d)}Ll=1.

From the results obtained in (2.43) of Appendix 2.B, we sort the 2L eigenvalues in the as-

cending order so that {λl(βn, d)}Ll=1 are negative, and {λl(βn, d)}2Ll=L+1 are positive. Assuming



www.manaraa.com

35

all the negative eigenvalues of Σv(d)QH(βn) are distinct, we obtain

P{DH(βn|d) < 0} =
L∑
l=1

2L∏
m=1,m 6=l

λl(βn, d)
λl(βn, d)− λm(βn, d)

(2.31)

The BER of M -QAM can be obtained by substituting (2.31) into (2.17)–(2.19), respectively.

Obviously, from (2.31) we observe that an error floor appears if λl(βn, d) < 0 for l = 1, . . . , L

(i.e., Σvl(d)QH,2(βn) has negative eigenvalues), when the noise power N0 → 0, or the average

SNR goes to infinity. We observe that when N0 = 0 and ρl = 1 for all l, it follows from (2.43)

in Appendix 2.B that λ−l (d, βn) = 0 for all l, which shows that an error floor does not occur

in this case.

I.I.D. Diversity

In the literature, a substantial part of the research effort on the BER evaluation of M -QAM

has been devoted to i.i.d. Rayleigh fading channels, c.f. [12,17,18]. Here, we derive results for

this case based on our new approach for the purpose of comparison. For i.i.d. branches, we

obtain that ρl = ρ, σ2
ĉl

= σ2
ĉ , and σ2

cl
= σ2

c for l = 1, . . . , L. In this case, Σv(d)QH(βn) has

only two distinct eigenvalues with each of them being repeated L times, and we denote them

as λ±(βn, d). Using a result in [30], the CDF P{DH(βn|d) < 0} can be obtained as

P{DH(βn|d) < 0} = [A(βn|d)]L
L−1∑
l=0

(
L+ l − 1

l

)
× [1−A(βn|d)]l (2.32)

where A(βn|d) = λ−(βn,d)
λ−(βn,d)−λ+(βn,d)

. Exact formulation of the BER is given in Appendix 2.C.

Let us rewrite A(βn|d) as A(βn|d) = A(βn|αh, αv), where d = a(αh+jαv). Then, we obtain

a closed-form average BER expression for M -QAM with L-fold MRC as (2.45).

For comparison, the result given in [17, eq. (37)] is in the form of a two-dimensional (2-

D) integral of the 2L-order parabolic cylinder function, and thus is numerically intensive to

evaluate. In [18, eqs. (9), (12)], an alternative closed-form BER expression for M -QAM with

PSAM was presented. Our result given by (2.45) and (2.44) of Appendix 2.C explicitly shows

the relation between ρl and the BER, and thus provides more insight into the behavior of
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PSAM, as will be discussed next in Subsection 2.4.2.2.

MMSE-CE

The MMSE channel estimator for PSAM has attracted a lot of research interest in the

literature, and it provides a performance benchmark for other linear channel estimators. For

MMSE-CE with i.n.d. branches, we can show that

ρl =
√

[WmmseΣyPSWH
mmse]l,l/σcl =

√
[Σc,yPSΣ−1

yPS
ΣH
c,yPS

]l,l/σcl , (2.33)

Σvl(d) =

 |ρl|2σ2
cl

|ρl|2σ2
cl
d∗

|ρl|2σ2
cl
d σ2

cl
|d|2 +N0

 (2.34)

Obviously, ρl is real-valued for MMSE-CE. Using (2.43) we get the eigenvalue pairs as

λ±l (d, βn) =
1
2
σ2
cl
aρ2

l (αh − βn)± 1
2
ρl{σ4

cl
a2 × [α2

h + ρ2
l β

2
n + (1− ρ2

l )α
2
v − 2ρ2

l βnαh] + σ2
cl
N0}1/2

(2.35)

By substituting (2.35) into (2.31), we obtain a closed-form BER expression for QAM with

MMSE-CE in i.n.d. Rayleigh fading.

For MMSE-CE and i.i.d. Rayleigh fading channels, it follows that the BER of M -QAM is

given by (2.45), where A(βn|d) therein is replaced by

A(βn|d) =
1
2
− 1

2
[aσcρ(αh − βn)]× [σ2

ca
2(α2

h + ρ2β2
n + (1− ρ2)α2

v − 2ρ2βnαh) +N0]−1/2

(2.36)

The study of the detection error floor of QAM with PSAM is of practical interest. Let us

consider the BER of MRC QAM with MMSE-CE for the asymptotic case of high SNR. We note

that when αh−βn > 0 and αh−βn < 0, the conditional BERs are given by P{DH(βn|d) < 0}

and 1−P{DH(βn|d) < 0}, respectively. Thus, for brevity of presentation, we assume αh−βn >

0 and study P{DH(βn|d) < 0} below.

For MMSE-CE the effect of ICE at the lth branch is manifested by the fact that ρl < 1.

When N0 = 0 and ρl < 1, using (2.35) we observe that λ−l (d, βn) < 0 is true. Note that
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the negative eigenvalues of ΣvlQH,2(βn) for N0 = 0 mean that a detection error floor occurs.

When N0 = 0 and ρl = 1 for all l, using (2.35) again we observe that λ−l (d, βn) = 0 and

λ+
l (d, βn) = σ2

cl
a(αh − βn), which shows that an error floor does not occur in this case. Thus,

{ρl}Ll=1 is closely related to the performance of diversity QAM with PSAM. The error floor

for M -QAM with MMSE-CE can be analytical evaluated by using (2.33)–(2.36) with (2.31) or

(2.32). We note that the normalized residual MSE (which is proportional to 1 − |ρl|2 defined

in Section 2.2.3) of MMSE-CE in a non-diversity Rayleigh channel has recently been studied

in [31, Appendix]. It was shown that for a bandlimited fading process (e.g., the Jakes’ model)

with BfTsP < 1/2 and infinite PSAM interpolation order (F → ∞), the normalized residual

MSE decreases proprotionally as the SNR increases, which suggests that under these conditions

an error floor does not occur.

Finally, we underscore that we have verified that for all the square and rectangular M -QAM

constellations obtained in this chapter, our new BER results, when simplified to the case of

perfect CSI, are numerically identical to the known results given in [14,125].

2.5 Numerical Examples and Discussions

In this section, we provide some numerical results for the performance of the M -QAM

MRC receiver in general Rician fading channels taking into account the effects of ICE and

various system and channel parameters. We assume the same data symbol power Pd and pilot

symbol power PPS unless otherwise stated. To clearly illustrate the effects of Doppler fading

bandwidth and the Rician K factor, we also assume Bf,l = Bf , fd,l = fd, and Kl = K (for all

l) for all the cases studied.

2.5.1 Verification of the BER Analysis

For correlated fading, the popular constant spatial correlation model [125] (with corre-

lation coefficient ρc) is assumed. For example, for balanced branches and L = 3, Σc(0) =
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σ2
c


1 ρc ρc

ρc 1 ρc

ρc ρc 1

. To show the effect of the phase vector θ = [θ1, · · · , θL]T of the LOS com-

ponents, we assume fdTs = 0 and BfTs = 0.02. In our simulation, we assume Rc(n) =

Rc(0)J0(2πnBfTs), i.e., the spatial and temporal correlations can be separated.

First, we present the simulated and calculated BER results (averaged over all possible ioff’s)

for 16-QAM receivers with L = {1, 2, 3} in i.i.d. and correlated Rician fading channels in Fig.

2.3, and the results for the effect of ρc in Fig. 2.4, respectively. The simulation results (markers)

verify the validity and accuracy of our new BER analysis approach. Fig. 2.3 shows that the

correlated fading (with θ being an all-zero vector) severely degrades the performance of MRC

QAM in Rician fading channels. As L increases, the degradation of BER for MMSE-CE caused

by correlated branches becomes larger. Fig. 2.4 shows that as ρc increases, the performance of

MRC QAM with CSI, MMSE-CE, and sinc-CE becomes worse for θ = [0, 0, 0], but becomes

better than the independent fading case for θ = [0, π/2, π] (i.e., a non-cophased LOS vector).

This observation may be explained by the fact that the phase vector θ significantly affects

the MRC output Rician-K factor and the SNR gain in correlated Rician fading channels, first

discussed in [32].

Next, we present the BER results for the 32-QAM MRC receiver in i.n.d. Rayleigh and

Rician fading channels in Fig. 2.5, and those for 16-QAM in i.i.d. Rayleigh and Rician fading

channels in Fig. 2.6. For independent Rician channels the distribution of the LOS phase vector

θ does not affect the BER performance, and thus we set θ to a zero vector for all the remaining

numerical examples. In Fig. 2.5, for BfTs = 0.02, QAM with MMSE-CE gives a performance

close to that of the perfect CSI case, and the SNR loss is within 2 dB for all SNRs shown in

the figure; while in Fig. 2.6, for a larger BfTs (BfTs = 0.03) and a larger P the relevant SNR

gap becomes larger. Fig. 2.5 shows that the BER of sinc-CE with Hamming window (sinc-

Hamm-CE) is uniformly lower than that of sinc-CE with rectangular window (sinc-rect-CE).

On the contrary, for the parameters studied in Fig. 2.6, QAM with sinc-rect-CE performs

significantly better than QAM with sinc-Hamm-CE. In addition, the SNR gaps between sinc-
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Figure 2.3 BER (averaged over all ioff’s) vs. average bit SNR per branch
for 16-QAM MRC receivers with CSI and the MMSE-CE, re-
spectively, in independent and correlated Rician (K = 5 dB)
fading channels. θ = 01×L, L = {1, 2, 3}, P = 10, F1 = F2 = 5,
BfTs = 0.02, fdTs = 0, and fo = 0.

CE and MMSE-CE depend on the average SNR, P , F , BfTs, and other parameters. This

observation demonstrates that the relative performance between sinc-rect-CE and sinc-Hamm-

CE, and the performance gap between sinc-CE and MMSE-CE, crucially depend on the channel

and system parameters.

2.5.2 Effects of Design Parameters

In the following, we show the effects of some design parameters, including the pilot symbol

insertion interval P , number of pilot symbols F , and the ratio PPS/Pd on the performance of

the MRC M -QAM.

We show the effect of P on the BER of 16-QAM with MMSE-CE and sinc-CE in Fig.

2.7, assuming L = 2 and ioff = bP/2c. Our results show that the BER degrades slowly when

P ≤ 14. When P > 14, both the performances of MMSE-CE and sinc-Hamm-CE start to

degrade rapidly. Sinc-Hamm-CE may give a performance very close to (though uniformly
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Figure 2.4 BER (averaged over all ioff’s) vs. spatial correlation coefficient
ρc for 16-QAM MRC receivers with CSI, MMSE- and sinc-inter-
polator-based (with rectangular and Hamming windows) chan-
nel estimators, respectively, in Rician (K = 5 dB) fading chan-
nels. θ = [0, 0, 0] and [0, π/2, π], γ̄b = 10 dB, L = 3, P = 10,
F1 = F2 = 5, BfTs = 0.02, fdTs = 0, and fo = 0.

worse than) that of MMSE-CE, especially for P = 12.

Next, we study the effect of PPS/Pd, the power ratio between pilot and data symbols in Fig.

2.8. The total average transmission power is given by Pt = 1
P (α+(P−1))Pd, where α = PPS/Pd.

For a fair comparison between the cases of PPS/Pd 6= 1 and PPS/Pd = 1, we let Pt to be identical

for both cases. When α increases, the power allocated to the data symbol Pd decreases which

degrades the BER, while at the same time the channel estimation accuracy becomes better

which improves the BER. Without power normalization, ĉ(i) could be directly obtained as

ĉ(i) = WyPS. We study the case with channel gain power normalization where ĉ(i) is obtained

from ĉ(i) = WyPS/
√
α. To evaluate the corresponding BER, we need to modify (2.24)–(2.26)

as follows: µ̂c(i) = W
√
PPSµPS/

√
α, Σĉ,c = WΣc,yPS/

√
α, and Σĉ,ĉ = WΣyPSWH/α.

Fig. 2.8 shows that PPS/Pd ∈ [2, 3] gives optimal BER performance for MMSE-CE and

sinc-CE, and compared to the case of PPS/Pd = 1 the BERs can be reduced by a factor of

about 1.5− 2.5. We note that for non-constant modulus formats, such as M -QAM, the power
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Figure 2.5 BER (averaged over all ioff’s) vs. average bit SNR of the
first branch for 32-QAM MRC receivers with CSI, MMSE-
and sinc-interpolator-based channel estimators, respectively, in
i.n.d. Rayleigh and Rician (K = 5 dB) fading channels. L = 2,
P = 10, F1 = F2 = 4, BfTs = 0.02, fdTs = 0.01, and fo = 0.
The SNR of the first branch is 2 dB larger than that of the
second branch.

normalization of the channel estimate is necessary (except for the MMSE-CE where the power

normalization has been taken into account in Wmmse). Otherwise, the case of PPS/Pd 6= 1 (e.g.,

for sinc-CE) may severely degrade the performance.

We study the effects of F2 and F on the BER of the M -QAM MRC receivers with MMSE-

CE and sinc-CE. We present the BER vs. F2 for 32-QAM in i.i.d. Rician and Rayleigh fading

channels in Fig. 2.9 for F = 24. The cases of F2 = 0 and F2 = 12 correspond to a prediction-

based (thus one-sided) and a centered observation window, respectively. Our result shows that

the centered observation window (F1 = F2 = 12) gives a better performance than the case

of F2 6= 12 for MMSE-CE and sinc-rect-CE, as expected. Furthermore, MMSE-CE is less

sensitive to a non-centered window than sinc-CE.

The BER vs. F for 16- and 64-QAM with MMSE-CE and sinc-CE is presented in Fig.

2.10. We observe that as F increases, the BER performances of QAM with MMSE-CE and



www.manaraa.com

42

Figure 2.6 BER (averaged over all ioff’s) vs. average bit SNR per branch
for 16-QAM MRC receivers with CSI, MMSE- and sinc-interpo-
lator-based channel estimators, respectively, in i.i.d. Rayleigh
and Rician (K = 5 dB) fading channels. L = 2, P = 15,
F1 = F2 = 5, BfTs = 0.03, fdTs = 0.015, and fo = 0.

sinc-CE improve monotonically. For a small to medium F , sinc-Hamm-CE may be worse than

sinc-rect-CE, while for a larger F (e.g. F ≥ 15), sinc-Hamm-CE performs uniformly better

than the latter, and its performance converges to that of the MMSE-CE. This observation

confirms that the relative performance of sinc-rect-CE and sinc-Hamm-CE depends on the

system parameters.

2.6 Summary

In this chapter, we derived the exact BER formulas of diversity square and rectangular M -

QAM with ICE for Rician and Rayleigh fading channels. The novelty in our approach is that

we derived new DVs of the MRC combiner and then expressed the BER of MRC combiner

in terms of the distribution of them, thus avoiding many of the difficulties faced by other

approaches. More importantly, by doing this, our new result is valid for arbitrary linear channel

estimators, and unbalanced and correlated diversity branches. In addition, we discussed the
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Figure 2.7 BER versus the pilot symbol insertion interval P for MRC
16-QAM with MMSE-CE and sinc-CE, respectively, in i.i.d.
Rayleigh and Rician (K = 5 dB) fading channels. γ̄b = 20 dB,
L = 2, ioff = bP/2c, F1 = F2 = 6, BfTs = 0.03, fdTs = 0.015,
fo = 0.

relation between channel estimation accuracy and BER floor, and evaluated the performance

of MRC M -QAM with the practical PSAM MMSE-CE and sinc-CE with different real-world

parameter settings using numerical examples. One highlight of our results that’s immediately

applicable to practice is we clearly showed the relative performance of Hamming window and

rectangular window for sinc-CE, and the performance gap between sinc-CE and MMSE-CE,

depend on the system and channel parameters. These results provide valuable insights for the

design of PSAM-based channel estimation schemes for diversity QAM in arbitrarily correlated

or uncorrelated Rician or Rayleigh channels.

2.7 Appendix 2.A Formulation of BER of 16-PAM

Similar to what we developed in Section 2.3.1, the BERs for bits b1, b2, b3 and b4 in 16-PAM

are expressed respectively as:
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Figure 2.8 BER vs. the power allocation ratio PPS/Pd for MRC 16-QAM
with MMSE-CE and sinc-CE (with power normalization), re-
spectively, in i.i.d. Rayleigh and Rician (K = 5 dB) fad-
ing channels. γ̄b = {10, 20} dB, L = 3, P = 10, ioff = 5,
F1 = F2 = 10, BfTs = 0.03, fdTs = 0.015, fo = 0.

P16,H(1) =
1
8

[P̃H(0|1)+P̃H(0|3)+P̃H(0|5)+P̃H(0|7)+P̃H(0|9)+P̃H(0|11)+P̃H(0|13)+P̃H(0|15)]

(2.37)

P16,H(2) = 1
8 [4 + P̃H(8|9)− P̃H(−8|9) + P̃H(8|11)− P̃H(−8|11) + P̃H(8|13)− P̃H(−8|13)

+P̃H(8|15)− P̃H(−8|15) + P̃H(−8|7) + P̃H(−8|5) + P̃H(−8|3) + P̃H(−8|1)

−P̃H(8|7)− P̃H(8|5)− P̃H(8|3)− P̃H(8|1)]
(2.38)
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Figure 2.9 BER versus F2 for MRC 32-QAM with MMSE-CE and sinc-rec-
t-CE, respectively, in i.i.d. Rayleigh and Rician (K = 5 dB)
fading channels. γ̄b = 20 dB, L = 2, P = 15, ioff = 7, F = 24,
BfTs = 0.03, fo = 0.

P16,H(3) = 1
8 [4 + P̃H(12|13)− P̃H(4|13) + P̃H(−4|13)− P̃H(−12|13) + P̃H(12|15)− P̃H(4|15)

+P̃H(−4|15)− P̃H(−12|15) + P̃H(4|11)− P̃H(−4|11) + P̃H(−12|11)− P̃H(12|11)

+P̃H(4|9)− P̃H(−4|9) + P̃H(−12|9)− P̃H(12|9) + P̃H(4|7)− P̃H(−4|7)

+P̃H(−12|7)− P̃H(12|7) + P̃H(4|5)− P̃H(−4|5) + P̃H(−12|5)− P̃H(12|5)

+P̃H(−4|3)− P̃H(−12|3)− P̃H(4|3) + P̃H(12|3) + P̃H(−4|1)− P̃H(−12|1)

−P̃H(4|1) + P̃H(12|1)
(2.39)
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Figure 2.10 BER versus F for MRC 16- and 64-QAM receivers with MM-
SE-CE and sinc-CE, respectively, in an i.i.d. Rician fad-
ing channel. K = 5 dB, γ̄b = 20 dB, L = 2, ioff = 7,
F1 = F2 = F/2, BfTs = 0.03, fo = 0.

P16,H(4) = 1
8 [4 + P̃H(14|15)− P̃H(10|15) + P̃H(6|15)− P̃H(2|15) + P̃H(−2|15)− P̃H(−6|15)

+P̃H(−10|15)− P̃H(−14|15)− P̃H(14|13) + P̃H(10|13)− P̃H(6|13) + P̃H(2|13)

−P̃H(−2|13) + P̃H(−6|13)− P̃H(−10|13) + P̃H(−14|13)− P̃H(14|11) + P̃H(10|11)

−P̃H(6|11) + P̃H(2|11)− P̃H(−2|11) + P̃H(−6|11)− P̃H(−10|11) + P̃H(−14|11)

−P̃H(10|9) + P̃H(14|9) + P̃H(6|9)− P̃H(2|9) + P̃H(−2|9)− P̃H(−6|9) + P̃H(−10|9)

−P̃H(−14|9)− P̃H(10|7) + P̃H(14|7) + P̃H(6|7)− P̃H(2|7) + P̃H(−2|7)− P̃H(−6|7)

+P̃H(−10|7)− P̃H(−14|7)− P̃H(6|5) + P̃H(10|5)− P̃H(14|5) + P̃H(2|5)− P̃H(−2|5)

+P̃H(−6|5)− P̃H(−10|5) + P̃H(−14|5)− P̃H(6|3) + P̃H(10|3)− P̃H(14|3) + P̃H(2|3)

−P̃H(−2|3) + P̃H(−6|3)− P̃H(−10|3) + P̃H(−14|3)− P̃H(2|1) + P̃H(6|1)− P̃H(10|1)

+P̃H(14|1) + P̃H(−2|1)− P̃H(−6|1) + P̃H(−10|1)− P̃H(−14|1)]
(2.40)

The average BER for horizontal 16-PAM can be obtained as
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P̂16,H = 1
4 [P16,H(1) + P16,H(2) + P16,H(3) + P16,H(4)]

= 1
32

[
C16 +

N16∑
n=1

ωnP̃H(βn|αn)

]
(2.41)

where C16 = 12 and N16 = 120 , and the wn, βn, and αn are given in Table 2.3, respectively.

The average BER for vertical 16-PAM can be obtained similarly.

2.8 Appendix 2.B Derivation of Eigenvalues of Σvl(d)QH,2(βn)

We now derive the exact form of the eigenvalue pair λ±l (βn, d) at the lth branch. For

simplicity, we suppress the subscript l below. Let Σv(d) =

 σ2
ĉ ρ∗σĉσcd

∗

ρσĉσcd σ2
c |d|2 +N0

 and

QH,2(βn) =

 −aβn 0.5

0.5 0

, where d = (αh + jαv)a and ρ = ρR + jρI . Here, ρR and ρI are

the real and imaginary parts of ρ, respectively. It follows that Σv(d)QH,2(βn) = −βnaσ2
ĉ + 0.5ρ∗σĉσcd∗ 0.5σ2

ĉ

−βnaρσĉσcd+ 0.5σ2
c |d|2 + 0.5N0 0.5ρσĉσcd

.

For a matrix of the form

 c1 c2

c3 c4

 we obtain its two eigenvalues as [33],

λ± =
1
2

[
(c1 + c4)±

√
4c2c3 + (c1 − c4)2

]
(2.42)

Based on this observation, we obtain (c1− c4)2 = β2
na

2σ4
ĉ −σ2

ĉσ
2
c [Im(ρd)]2 + j2βnaσ3

ĉσcIm(ρd),

4c2c3 = −2βnaρσ3
ĉσcd+ σ2

ĉσ
2
c |d|2 + σ2

ĉN0, and c1 + c4 = Re(dρ)σĉσc − βnaσ2
ĉ . Applying these

equalities to (2.42), we obtain the two eigenvalues of ΣvQH,2(βn) as:

λ±l (βn, d) =
1
2

[(ρl,Rαh − ρl,Iαv)aσĉlσcl − βnaσ
2
ĉl

]± 1
2
σĉl{a

2[σ2
cl

(1− ρ2
l,R)α2

v + σ2
cl

(1− ρ2
l,I)α

2
h

−2σ2
c,lρl,Rρl,Iαhαv − 2βnσĉlσcl × (ρl,Rαh − ρl,Iαv) + β2

nσ
2
ĉl

] +N0}1/2 (2.43)

where ρl,R = Re(ρl) and ρl,I = Im(ρl).
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Table 2.3 Coefficients for BER calculation for 16-PAM

n βn αn ωn n βn αn ωn n βn αn ωn n βn αn ωn
1 0 1 1 31 -4 15 1 61 -2 15 1 91 6 7 1
2 0 3 1 32 -12 15 -1 62 -6 15 -1 92 2 7 -1
3 0 5 1 33 4 11 1 63 -10 15 1 93 -2 7 1
4 0 7 1 34 -4 11 -1 64 -14 15 -1 94 -6 7 -1
5 0 9 1 35 -12 11 1 65 14 13 -1 95 -10 7 1
6 0 11 1 36 12 11 -1 66 10 13 1 96 -14 7 -1
7 0 13 1 37 4 9 1 67 6 13 -1 97 6 5 -1
8 0 15 1 38 -4 9 -1 68 2 13 1 98 10 5 1
9 8 9 1 39 -12 9 1 69 -2 13 -1 99 14 5 -1
10 -8 9 -1 40 12 9 -1 70 -6 13 1 100 2 5 1
11 8 11 1 41 4 7 1 71 -10 13 -1 101 -2 5 -1
12 -8 11 -1 42 -4 7 -1 72 -14 13 1 102 -6 5 1
13 8 13 1 43 -12 7 1 73 14 11 -1 103 -10 5 -1
14 -8 13 -1 44 12 7 -1 74 10 11 1 104 -14 5 1
15 8 15 1 45 4 5 1 75 6 11 -1 105 6 3 -1
16 -8 15 -1 46 -4 5 -1 76 2 11 1 106 10 3 1
17 -8 7 1 47 -12 5 1 77 -2 11 -1 107 14 3 -1
18 -8 5 1 48 12 5 -1 78 -6 11 1 108 2 3 1
19 -8 3 1 49 -4 3 1 79 -10 11 -1 109 -2 3 -1
20 -8 1 1 50 -12 3 -1 80 -14 11 1 110 -6 3 1
21 8 7 -1 51 4 3 -1 81 10 9 -1 111 -10 3 -1
22 8 5 -1 52 12 3 1 82 14 9 1 112 -14 3 1
23 8 3 -1 53 -4 1 1 83 6 9 1 113 2 1 -1
24 8 1 -1 54 -12 1 -1 84 2 9 -1 114 6 1 1
25 12 13 1 55 4 1 -1 85 -2 9 1 115 10 1 -1
26 4 13 -1 56 12 1 1 86 -6 9 -1 116 14 1 1
27 -4 13 1 57 14 15 1 87 -10 9 1 117 -2 1 1
28 -12 13 -1 58 10 15 -1 88 -14 9 -1 118 -6 1 -1
29 12 15 1 59 6 15 1 89 10 7 -1 119 -10 1 1
30 4 15 -1 60 2 15 -1 90 14 7 1 120 -14 1 -1
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2.9 Appendix 2.C Closed Form BER Result for I.I.D Rayleigh

The eigenvalue obtained in (2.43) in Appendix 2.B is for i.n.d case, thus the terms therein

have subscript l to dentate the branches. In i.i.d case, we can drop the l subscript because

each branch are identically distributed. We arrive at (2.44).

A(βn|d) =
1
2
− 1

2
[(ρRαh − ρIαv)aσc − βnaσĉ]

(
a2[σ2

c (1− ρ2
R)α2

v + σ2
c (1− ρ2

I)α
2
h

−2σ2
cρRρIαhαv − 2βnσĉσc(ρRαh − ρIαv) + β2

nσ
2
ĉ ] +N0

)−1/2 (2.44)

By plugging this result back into (2.32), we obtain the closed-form BER for i.i.d Rayleigh

case.

P̄M =
4

log2M
{C√M +

1√
M

√
M∑

m=1

N√M∑
n=1

wn[A(βn|αn,
√
M − 2m+ 1)]L

×
L−1∑
l=0

(
L+ l − 1

l

)
[1−A(βn|αn,

√
M − 2m+ 1)]l}. (2.45)
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CHAPTER 3. PERFORMANCE OF GSC COMBINER UNDER

GENERALIZED FADING CHANNELS WITH IMPERFECT CHANNEL

ESTIMATION

3.1 Introduction

Generalized selection combining [34–36] is a type of diversity receivers in which a subset

of available diversity branches is selected and combined based on the branch SNRs. It bridges

the gap between MRC and selection combining (SC), and is a very useful diversity combining

technique for dense multipath channels, and has recently attracted a lot of research interest in

many applications.

GSC involves an selection mechanism that the receiver will only combine the selected

branches based on their SNR measurements. In the perfect CSI case, the combiner will select

the branches that have the N highest SNRs. In practice, the adverse effect of ICE on the

performance must be accurately evaluated and taken into account in the system design [10,11,

13,17,37–40]. The additional difficulty for the analysis lies in how to quantify the ICE’s effect

on the selection of the available diversity branches for combining, in addition to its effect on

the combining operation itself as in the MRC case.

One approach to evaluate the BER performance of GSC diversity receivers is to derive

the PDF of the GSC combiner output SNR. The SNR dependent BER can then be obtained

by plugging the SNR into the BER expressions for different modulation schemes. The actual

BER for the certain modulation under a particular model of fading channels can be obtained

by integrating the obtained BER expression over the PDF of the SNR. The main difficulty lies

in how to obtain the correct SNR output statistics. Particularly important for ICE case is how

to arrive at the effective SNR distribution which takes into account the effect of ICE under
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different fading channel conditions. A popular approach to evaluate the PDF of the diversity

output SNR with ICE was provided in [37], which, however, involves a major approximation,

as analytically illustrated and numerically verified in [39, 40]. Using the PDF result in [37],

the performance of GSC diversity QAM with Gaussian weighting errors in an i.i.d. Rayleigh

fading channel was analyzed in [38], which consequently involves a major approximation and

may be regarded as a loose performance upper bound (see [40]). To our knowledge, an accurate

BER result for M -QAM with GSC and ICE applicable to different fading channel types is not

available in the literature. Even for the Rayleigh fading channel an exact closed-form BER

expression for M -QAM diversity receivers with ICE is not known.

In this chapter, we take the approach to relate the BER performance of M -QAM with

ICE to the signal-constellation-dependent effective GSC combiner output SNRs, and derive its

MGF for independent channels. Based on this result we derive accurate BER expressions for

square and rectangular M -QAM with GSC and ICE. Our new BER expressions are simple and

elegant, and simplify to closed-form for the Rayleigh fading case. Furthermore, they provide

new insight into the performance loss caused by ICE compared to the case of perfect CSI.

Finally, we evaluate the performance of MMSE- and sinc-interpolator-based channel estimators

with PSAM, and report some new observations.

3.2 System and Channel Model

3.2.1 Signal Model and Channel Estimation Error Model

We basically follow the same model for the M -QAM modulation schemes discussed in 2.2.1.

We also follow the same framework introduced in 2.2.3 to model the effect of ICE.

3.2.2 GSC Combining

In GSC, there are a total of L available diversity branches, out of which we combine N

branches with the highest SNRs. We call this GSC scheme GSC(L,N). Assuming all the

branches have the same noise level, we rank the estimated channel coefficients {ĉl(i)}Nl=1 by

their instantaneous powers in a non-increasing order, such that |ĉ(1)(i)|2 ≥ |ĉ(2)(i)|2 ≥ · · · ≥
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|ĉ(N)(i)|2. Here and throughout this chapter we use subscript (n) to denote the branch with

the nth largest SNR. The signals and channel estimates of the first N strongest branches are

selected and used to detect the data d(i) per MRC rule. Accordingly, the complex decision

variable for GSC is given by D̃ =
∑N

l=1 ĉ
∗
(l)(i)y(l)(i)/

∑N
l=1 |ĉ(l)(i)|2. The transmitted sym-

bol d(i) can be recovered by comparing D̃ with the horizontal and vertical QAM decision

boundaries [13,14,17].

The BER performance of the GSC combiner can be expressed in terms of the conditional

BER P̃H(Bi|Ah, Av) conditioned on the decision boundaries and transmitted constellation

points. We can then obtain the signal-constellation-dependent BER by averaging the condi-

tional BER obtained in (2.13).

Next, we derive the conditional BER P̃H(Bi|Ah, Av) for PAM by evaluating the signal-

constellation-dependent effective SNRs for ICE. We assume Gray bit-mapping throughout this

chapter. Once we obtain the signal-constellation-dependent effective SNRs for ICE, the con-

ditional BER can then be obtained by integrating out the SNR with regard to their respective

distributions under different fading models. The average BER for the GSC receiver can then

obtained by plugging the results into (2.17) for the rectangular M -QAM case. In the following

sections, we first look at some of the existing results on the MGF for the SNR output of GSC

under CSI case. Aided by this result, we then develop the MGF of the effective SNR under

the ICE case.

3.3 MGF of GSC Output SNR Under CSI

In this section, we looked into the problem of obtaining the MGF of the GSC output SNR

over generalized fading channels. For a GSC(L,N) combiner, the ordered SNR vector from

the N selected branches is represented as: γ̂ = [γ(1), γ(2), . . . , γ(N)]T and its joint PDF is given

in [46] and [36] as:

fγ(1),...,γ(N)
(y1, . . . , yN ) =

∑
n1,...,nN

n1 6=n2 6=... 6=nN

fn1(y1) . . . fnN (yN )
L∏

l′=N+1

Fnl′ (yN ) (3.1)
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Here, the y1, . . . , yN are the SNRs of the diversity branches with y1 being the largest SNR.

The indexes n1, . . . , nN are the N branches that are selected out of the total L diversity

branches. Here the fnk(y) is the PDF of the output SNR of the nkth diversity branch, where

k = 1, . . . , L. Fnl′ (y) is the corresponding CDF.

Specific PDF expressions for generalized fading channels such as Rayleigh, Rician, and

Nakagami-m fading channels that are used to evaluate the joint PDF in (3.1) can be found

in Table I in [36] and also in [35], relist here in the first column of Table 3.1. We express the

GSC output SNR as γs =
∑N

k=1 γ(k), and its MGF is defined as Φγs(s) = E[e−γss]. Using joint

PDF results in (3.1), the MGF for the GSC output under CSI case is given in [36] as:

Φγs(s) =
∑

n1,...,nN
n1 6=n2 6=... 6=nN

∑
nN

∫ ∞
0

e−sxfnN (x)

[
N−1∏
l=1

Φnl(s, x)

][
L∏

l′=N+1

Fnl′ (x)

]
dx (3.2)

where Φnl(s, x) is the complementary incomplete MGF expression given by:

Φnl(s, x) =
∫ ∞
x

fnle
−sydy (3.3)

The closed-form expression of the complementary incomplete MGF for different fading

cases are presented in the second column of Table 3.1. The summation
∑

n1,...,nN
n1 6=n2 6=... 6=nN

∑
nN

means the
(

L
N−1

)
possible combinations of selecting the (N−1) branches with the largest SNRs

out of the total L branches, and the summation
∑

nN
denotes the branch index nN is selected

from the pool of remaining L−N + 1 available branches.

3.4 Constellation-Dependent Effective SNRs

In this section, we derive the MGF for the QAM GSC effective output SNR (dependent on

d and Bi) with ICE, which allows us to obtain the conditional BER P̃H(βi|αh, αv).

Given that d = (αh + jαv)a, y(l) = c(l)d + n(l), and c(l) = ĉ(l) + z(l), for l = 1, . . . , N , we

obtain that

D̃R =
N∑
l=1

Re
(
ĉ∗(l)y(l)

)
/

N∑
l=1

|ĉ(l)|2 = Re(d) + ñR = aαh + ñR. (3.4)
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Fading Type PDF expressions Incomplete MGF expressions
Rayleigh 1

γ̄nk
exp( −yγ̄nk

) 1/(1 + sγ̄nk) exp(−x[s+ 1/γ̄nk ])

Rician 1+Knk
γ̄nk

exp(−Knk −
(1+Knk )y

γ̄nk
) 1+Knk

1+Knk+sγ̄nk
exp

(
− sKnk γ̄nk

1+Knk+sγ̄nk

)
·I0(2

√
Knk(Knk + 1)y/γ̄nk) ·Q1

(√
2Knk (Knk+1)

Knk+1+sγ̄nk
,
√

2(sγ̄nk +Knk + 1)x/γ̄nk

)
Nakagami-m (mnkγ̄nk

)mnk y
mnk

−1

Γ(mnk ) exp(−mnk
γ̄nk

y) 1
Γ(mnk

[ mnk
mnk+sγ̄nk

]mnkΓ(mnk , x[s+mnk/γ̄nk ])

Table 3.1 The PDF and incomplete MGF expressions for the SNR in
the nkth branch (for k = 1, . . . , L) over Rayleigh, Rician, and
Nakagami-m fading channels. In the table, γ̄nk is the aver-
age SNR per branch. For the Rician fading channels, Knk is
the Rice-K factor, I0(x) is the zeroth-order modified Bessel
function of the first kind, and Q1(a, b) is the first-order Mar-
cum-Q function defined as Q1(a, b) =

∫∞
b xe−(x2+a2)/2I0(ax)dx.

For the Nakagami fading channel, mnk is the fading param-
eter, Γ(a, x) is the incomplete Gamma function defined as
Γ(a, x) =

∫∞
x e−tta−1d t, and Γ(m) is the gamma function.

where ñR = Re
[∑N

l=1 ĉ
∗
(l)(z(l)d+ n(l))/

∑N
l=1 |ĉ(l)|2

]
.

Applying (3.4) in (2.13) leads to

P̃H(βi|αh, αv) = P{ñR < −|βi − αh|a}

= P

{
Re

(
N∑
l=1

ĉ∗(l)[z(l)d+ n(l)]

)
< −|βi − αh|a

N∑
l=1

|ĉ(l)|2
}

(3.5)

The equation above leads to the effective GSC output SNR with ICE (conditioned on d and

βi) as

γGSC
ICE|d,βi = (|βi − αh|a)2/var {ñR} ,

which, after some simplifications, yields

γGSC
ICE|d,βi = S0,GSC/(2N0,GSC), (3.6)

where S0,GSC = |βi − αh|2a2(
∑N

l=1 |ĉ(l)|2)2 and N0,GSC = var
{

Re(
∑N

l=1 ĉ
∗
(l)[z(l)d+ n(l)])

}
. We

have P̃H(βi|αh, αv) =
∫∞

0 Q(
√
γ)fγGSC

ICE|d,βi
(γ)dγ, where fγGSC

ICE|d,βi
(γ) is the PDF of γGSC

ICE|d,βi .
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Using the property that ĉl, zl, and nl are mutually independent, and that (zl + nl) is a

zero-mean circularly symmetric Gaussian noise with variance (1−|ρ|2)σ2
c +N0, we obtain that

conditioned on ĉl, N0,GSC = 1
2

∑N
l=1 |ĉ(l)|2((1− |ρ|2)|d|2 +N0). Thus, it follows from (3.6) that

γGSC
ICE|d,βi =

(βi − αh)2Ea
∑N

l=1 |ĉ(l)|2

(1− |ρ|2)σ2
c |d|2 +N0

, (3.7)

With the assumption that E[|ĉ(l)|2] = |ρ|2E[|c(l)|2], and ĉ(l) and c(l) have the same distributions

(e.g., with identical Rician-K or Nakagami-m factors), we can obtain

γGSC
ICE|d,βi =

|ρ|2(βi − αh)2Ea
∑N

l=1 γ(l)

(1− |ρ|2)|d|2γ̄ + 1
(3.8)

where γ̄ = σ2
c/N0 is the input average SNR per branch, and γ(l) is the lth largest input SNR.

Equation (3.8) gives the QAM GSC effective output SNR with ICE, and it is constellation and

boundary-dependent. Strictly speaking, ĉ(l) and c(l) will have the same distributions only under

Rayleigh fading conditions, but it is a very accurate approximation for Rician and Nakagami

fading channels nonetheless.

Using a procedure similar to that for deriving (3.8), we can show that the effective SNR at

the lth branch now is

γICE,l|d,βi =
|ρ|2(βi − αh)2Eaγl
(1− |ρ|2)|d|2γ̄ + 1

(3.9)

where γl = |cl|2/N0 is the instantaneous input SNR at the lth branch. For the perfect CSI

case, the constellation-dependent SNR at the lth branch is given by

γCSI,l|d,βi = (βi − αh)2Eaγl (3.10)

Using the results (3.2) for the GSC output SNR in the CSI case [35,36], we can obtain the

MGF of (3.8) for fading channels (valid for, e.g., Rayleigh, Rician, and Nakagami fading) as

ΦγGSC
ICE|d,βi

(s) = N

(
L

N

)∫ ∞
0

e−sxfγICE|d,βi
(x)
[
ΦγICE|d,βi

(s, x)
]N−1 [

FγICE|d,βi
(x)
]L−N

dx.

(3.11)

where fγICE|d,βi
(x), ΦγICE|d,βi

(s, x), and FγICE|d,βi
(x) are the PDF, truncated MGF, and CDF

expressions for the effective SNR γICE|d,βi at each i.i.d. branch, and can be obtained by replacing

γ̄ with γ̄ICE|d,βi in the relevant expressions in Table 3.1.
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Equation (3.11) leads to the conditional BER as

P̃H(βi|αh, αv) =
1
π

∫ π/2

0
ΦγGSC

ICE|d,βi

(
1

sin2 θ

)
dθ (3.12)

For Rayleigh fading, by using [34, eq. (28)] and [41, eq.(13)], we obtain a closed-form

expression for (3.11) as

ΦγGSC
ICE|d,βi

(s) =
1

(1 + sγ̄ICE|d,βi)N+1

L−N∏
n=1

(−1)n
(
L
N

)(
L−N
n

)
1 + n

N + sγ̄ICE|d,βi
.

Furthermore, using [41, eq. (40)]), we can simplify (3.12) to a closed-form expression as

P̃H(βi|αh, αv) =
1
π

(
L

N

) L−N∑
l=0

(−1)l
(
L−N
l

)
1 + l/N

× IN−1

(
π/2; γ̄ICE|d,βi ,

γ̄ICE|d,βi
1 + l/N

)
(3.13)

where In(θ; c1, c2) is defined as In(θ; c1, c2) = 1
π

∫ θ
0 ( sin2 φ

sin2 φ+c1
)n( sin2 φ

sin2 φ+c2
)dφ, which has a closed-

form expression given by [41, eq. (79)].

Some comments are in order. First, a comparison of (3.9) and (3.10) shows that the ASNR

loss per branch caused by ICE at the GSC output is given by

κ(γ) =
(1− |ρ|2)|d|2γ̄ + 1

|ρ|2
. (3.14)

For a larger |d|2, the loss is larger. When ρ = 1, there is no loss. Second, when the ASNR γ̄

increases, ρ may also increase, and the factor (1 − |ρ|2)γ̄ will determine whether or not there

is an error floor. If (1− |ρ|2)γ̄ is not upper-bounded, a detection error floor occurs.

3.5 Numerical Results

In Fig. 3.1, we present the BER for 16-QAM with GSC (L = 4) and PSAM, in Rayleigh

and Rician fading channels (K = 5 dB) with i.i.d. branches, and with a symmetric observation

window (F1 = F2 = 10, P = 15, and ioff = 8). The MMSE-CE gives a performance close to

that of the perfect CSI case, and the SNR loss is within 2.5 dB in both Rayleigh and Rician

channels for all SNRs shown in the figure. The BER of sinc-CE with Hamming window (sinc-

Hamm) is uniformly worse than that of MMSE-CE, with an additional SNR loss close to 1 dB.

The sinc-CE with rectangular window (sinc-Rect) gives the worst performance, and entails an

error floor at medium-to-high SNRs.
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Figure 3.1 BER versus the average bit SNR per branch for the 16-QAM
GSC receiver with CSI, MMSE- and Sinc-interpolator-based
(with rectangular and Hamming windows) channel estimators,
respectively. Rayleigh and Rician (K = 5 dB) fading. L = 4,
N = 2, P = 15, ioff = 8, F1 = F2 = 10, BfTs = 0.02.

Next, in Fig. 3.2, we present the BER for the 64-QAM GSC receiver (L = 4) with CSI and

MMSE-CE, respectively, in a Rayleigh fading channel. The performance loss for MMSE-CE

compared to CSI is almost constant for different N . The SNR loss of 64-QAM with MMSE-CE

is very close to that of 16-QAM with MMSE-CE.

Finally, we show the effect of the pilot symbol insertion interval P on the BERs of 16-

QAM with GSC in an i.i.d. Rayleigh channel in Fig. 3.3, where we assume F1 = F2 = 10, and

ioff = bP/2c, e.g. the data symbol is in the middle of two pilot symbols. The result shows that

when P increases from 2 to 14, the BER of MMSE-CE degrades slowly. When P = 14, the

BERs of the MMSE-CE starts to grade very fast as P increases. The same trends are observed

for different N .

In summary, our results above suggest that (1) the performance gap between sinc-Hamm-

CE and MMSE-CE highly depends on the PSAM parameters (e.g., P , F , ioff), but is less

sensitive to the SNR (before the error floor occurs). Sinc-CE with Hamming window may have
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Figure 3.2 BER versus the average bit SNR per branch for the 64-QAM
GSC receiver with CSI and MMSE-CE, respectively. Rayleigh
fading channel. L = 4, P = 15, ioff = 8, F1 = F2 = 10, and
BfTs = 0.02.

Figure 3.3 BER versus P for 16-QAM with MMSE-CE. Rayleigh fading
channel. ioff = bP/2c, F1 = F2 = 10, γ̄b = 20 dB, and
BfTs = 0.03.
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a performance very close to that of MMSE-CE for some setting of PSAM parameters (P , F ),

but with a substantial gap for some other case. (2) The trends for BER vs. P can be very

different for different ioff, P , F1, F2, but they may be quite similar for different diversity order

L and signal size M .

3.6 Summary

In this chapter, we identify a novel approach for accurate BER evaluation of M -QAM

GSC diversity receivers with PSAM and MMSE-CE in generalized fading channels (including

Rayleigh, Rician and Nakagami-m and Nakagami-q fading). We concentrate our efforts on

deriving the constellation-dependent effective SNR formulas for M -QAM with ICE, and then

integrate the BER expression over the SNR distribution for different fading channel models

respectively. Our new BER formulas are general and easy to evaluate, and provided new

insight into the performance loss caused by ICE. As an example, we simplify the BER results

for Rayleigh fading case to a closed-form expression, which was not available in the literature.

One of the important implications of this result is that we can now use the analytical means

to evaluate the relation of the anticipated BER performance and the type of practical channel

estimators used (such as MMSE- and sinc-interpolator-based channel estimators) and their

parameters, in Rician and Nakagami-m or Nakagami-q fading channels. The evaluation process

of our derived analytical results are in the form of either closed-form (Rayleigh) or easy-to-

compute integrations.
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CHAPTER 4. GENERALIZED SELECTION MULTIUSER DIVERSITY

4.1 Introduction

Many large-scale wireless communication systems such as cellular networks, WLAN and

WiMax systems, are multiuser systems that divide total system resources among all users.

One of the central problems in these systems is how to schedule users to share the resources

effectively, thus providing better coverage and higher capacity in terms of number of users

supported and data throughput. Compared to single user communication, multiuser systems

in fading channels can provide an additional diversity gain: multiuser diversity gain, a term

coined by Knopp and Humblet in [64]. We can exploit this extra diversity by designing CARA

type multiuser scheduling algorithms. Consider the uplink channel in a single cell in a cellular

multiuser network. The channel was considered to be a time-varying fading channel and it

was tracked at both the receiver and the transmitter (via feedback) and TDMA scheme was

utilized. Intuitively, the multiuser diversity comes from the fact that in a system with many

users and whose channels change independently, there is more likely that a specific user’s

channel is near its peak SNR at any one time slot. If scheduler always select the “best” user

to communicate to base station at any time slot, total system capacity is maximized because

the channel resources are given to the user who can best exploit it at all time. It is noted that

similar result for downlink was presented in [53–59,78].

TDMA is assumed in most of the above-mentioned schemes, where one and only one “best”

user could transmit at a given time slot, using all the available power. As proved in [64], such

a scheme will provide maximum total information-theoretic capacity. This result will translate

to maximal total data throughput only under certain conditions. However, for a CDMA

system with a fixed spreading gain and the assumption that each user could be assigned one
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codeword at any given time slot, scheduling one user at a time is no longer optimal. It’s

readily feasible to schedule multiple users for transmission in many wireless networks, such as

the wideband CDMA (WCDMA) [68] and ultra-wideband (UWB) networks [62, 63]. In those

systems, multiple parallel channels are available due to the availability of multiple orthogonal

(or quasi-orthogonal) spreading code and thus a parallel multiuser scheduling design is possible

and sometimes required. In [68], scheduling algorithms which maximize the sum throughput

of all the L users were proposed. In these schemes, the scheduling for each time slot requires to

solve a multi-dimensional nonlinear optimization problem for optimal power allocation, multi-

code assignment, and adaptive modulation. In [67], the authors proposed to schedule a number

of users for simultaneous transmission based on their instantaneous normalized SNRs. The

performance gain with respect to the conventional CDMA systems is evaluated based on the

Shannon information capacity criterion.

In this chapter, we propose a novel generalized selection multiuser diversity (GSMuD)

scheme where multiple users are scheduled to share the system resources according to their

respective channel conditions. Here “generalized” is in reference to legacy selective multiuser

diversity (SMuD) where only one user is selected for transmission in any time slot. In GSMuD,

the Nc out of total L users with the largest received SNR will be scheduled for communica-

tion. Our goal in designing GSMuD is to recognize the need to provide better total system

throughput under practical AMC scheme and generalized fading channels, and under the prac-

tical assumption that each user will be assigned one channel at a time. We also maintain the

prescribed QoS (in terms of BER and PER) levels of the scheduled users. Our approach in the

design and analysis is based on obtaining the marginal distributions of SNRs of ordered users,

and thus determine the optimal AMC modulation-switching SNR threshold to guarantee the

desired QoS. We also design an equal power allocation scheme that automatically shut down

certain users in poor fading conditions and redirect the available system power to other users.

We observe that many legacy selective multiuser scheduling systems are based on the

assumption that perfect CSI is available at the receiver and that such information is fed back

to the scheduler at the BS perfectly. In practice, it’s not always possible to obtain perfect
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CSI at the receiver. There are some results in the literature discussing effect of ICE on

the performance of the SMuD scheduler. Performance results for the effects of limited-rate

feedback of received SNR from the MS to BS, with SMuD schedulers using absolute-SNR (a-

SNR) and normalized-SNR-based (n-SNR) thresholding are obtained in [65,66]. The analysis

showed that the essential part of the scheduling gain could be preserved with the substantially

reduced feedback load. In [81], the effect of outdated channel feedback on the performance of

multiuser diversity with adaptive modulation and absolute- and normalized-SNR-based ranking

was evaluated.

We observe that the ICE at the multiple receivers significantly affects the design and

analysis of multiuser scheduling. However, none of the existing results in literature explicitly

proposed new scheduler design approaches in light of their analysis on the effects of ICE

on the legacy selective multiuser schedulers. We argue that the adverse effect of ICE must

be included in the GSMuD design to guarantee the QoS, such as the target PER and the

spectral efficiency (SE). Thus, in later part of this chapter, the effect of ICE caused by the

MMSE channel estimator are studied and the GSMuD algorithms are developed in light of the

knowledge that ICE is present in the system. In our design and analysis, the SNR-ranking now

is based on the effective SNRs of the users after the effect of ICE is included. To guarantee the

target PER in the presence of channel estimation errors, the AMC design and throughput-rate

calculation are optimized on the effective SNRs rather than the input SNRs. In our analysis, we

consider the practical scenario where different users could experience different fading severity,

or even different families of fading channels.

The major contributions of this work include: (1) We derive the statistics of the ordered

effective-SNR set due to ICE for L users, including the PDF and MGF of the Nth largest

SNR (N = 1, 2, . . . , L), and then evaluate the error and outage probabilities of each ranked

user; (2) We derive the individual-rate and sum-rate for the SNR-ranked users including the

effect of adaptive modulation and power allocation. The multiuser scheduling gain, defined

as the ratio of the GSMuD sum-rate with respect to that of conventional CDMA systems, is

also calculated; (3) Based on the derived BER, and outage probabilities of each ranked user
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and the individual-rate and sum-rate in CSI and ICE case, we design an AMC algorithm and

determined its optimal switching SNR threshold, and (4) Based on the above results, we design

a multiuser scheduling and power allocation scheme. The CSI case can be obtained as a special

case of our design and analysis.

4.2 System Model

4.2.1 GSMuD System Model

In the downlink of a typical centralized wireless network (e.g. synchronous CDMA downlink

channels), there are a total of L users awaiting for channel assignment. For simplicity, we

assume the queue buffer is not empty at any time for every user, and the data link layer design

problem, as that considered in [76,77], is not studied in this chapter.

In our model, we assume the multiuser signals are orthogonal, and the mutual interference

and external interference [67, 68, 79] are not explicitly modeled. The scheduler ranks the

instantaneous SNRs of all the L users in a descending order, denoted by γ(1), γ(2), . . . , γ(L)

(with γ(1) ≥ γ(2) ≥ · · · ≥ γ(L)), where γ(k) is the kth largest SNR. The scheduler chooses the

Nc users with the largest SNRs for simultaneous transmission in the next available time slot (a

packet duration). We assume a block-wise static fading channel, for which the channel remains

constant for a packet duration, and then varies from one block to another.

The fading channels for different users may follow different fading types and the channel for

different users may have different short-term mean signal strengths and channel parameters.

We assume the total power at the BS is a constant, and the available transmission power is

allocated equally among the selected users. User traffic is separated by different orthogonal

spreading code. We assume that each user can use one such spreading code at any given time

slot. Due to the limited number of available orthogonal spreading codes there are a maximum

of Nc users which can be scheduled for simultaneous transmission at any time slots. As we will

show later in this chapter, to achieve a target PER and a minimum throughput requirement

for each selected user, the number of simultaneous users could be less than Nc.

For each selected user, adaptive modulation with different levels of M -QAM or BPSK is
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employed. For the AMC design, our method to find the SNR thresholds for all the operating

modes is adopted from that proposed in [45], but with the effect of SNR-ranking being included.

This design guarantees that the average target PER is achieved for all the operating modes

(except the non-transmission mode). In AMC the power for each user remains constant and

only the signal constellation size is adapted according to the channel conditions.

4.2.2 Channel Estimation Error Model

We employ the PSAM type of channel estimator in the modeling of ICE. In each packet,

F pilot symbols (each with power PPS) are inserted. The remaining Np symbols are data

symbols (payload). Denote the channel gain of the kth user in pth packet as ck(p), which

remains constant over a packet duration and varies from one packet to another. ck(p) may

follow different types of fading distributions, such as Rayleigh, Nakagami-m, -q, and Weibull

models [125]. Furthermore, the channel gains for different users may have different mean signal

strengths and fading parameters.

Let ĉk(p) be the received feedback of ck(p). If we assume a perfect feedback process, the

imperfect channel estimates is entirely contributed by the channel estimator. Define ρ =

E[ĉ∗k(p)ck(p)]/[σcσĉ]. For the MMSE-CE, ρk may be obtained as in [31] and [8]:

ρk =
√

1TF×1(1F×F + IF /(PPSγ̄k))−11F×1 (4.1)

where 1M×N and IF are the M × N all-one matrix and the F × F identity matrix, and

superscripts T and −1 denote the transpose and matrix inverse, respectively. We have

ck(i) = ĉk(i) + zk(i) (4.2)

where zk(i) is an effective channel estimation error with zero mean and variance (1−|ρk|2)σ2
ck

.

Equation (4.2) is exact for MMSE-CE over Rayleigh channels, and is a very tight approximation

for Nakagami-m, -q, and Weibull channels [5].

Following what we have developed for GSC output effective SNR, for (I1, I2)-QAM mod-

ulation formats, γ̃k(d) (the effective SNR including the effect of ICE for a signal point with
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modulus d) was given in (3.9), rewritten here:

γ̃k(d) = βk(d)γk (4.3)

where βk(d) = |ρ|2
(1−|ρ|2)|d|2γ̄k+1

, and |d|2 = (i21 + i22)Ea, for i1 = {±1, . . . ,±(I1 − 1)} and i2 =

{±1, . . . ,±(I2− 1)}, and again Ea is used to normalized the total symbol energy to unity. For

rectangular (I1, I2)-QAM Ea = 3
I2
1 +I2

2−2
[14], which reduces to Ea = 3

2(M−1) for square M -QAM

(where M = I1I2). To utilize (4.3) for AMC design, we need to obtain a relation between the

effective SNR γ̃k and the input SNR γk independent of d. Using the numerical search approach

proposed in [31], we found the optimal fixed coefficient to replace the constellation-dependent d

in (4.3). The obtained “fixed” relationship will most accurately approximate the BER obtained

by simulation. The tight approximation for d obtained are

γ̃k ' βkγk (4.4)

where βk =


|ρ|2

(1−|ρ|2)γ̄k+1
M = 2, 4

|ρ|2
(1−|ρ|2)1.3γ̄k+1

M > 4
Given a target PER value PERth, we need to find target SER Ps,th and bit error rate Pb,th

for the design of adaptive modulation. For uncoded transmission and medium-to-high ASNRs,

PERth is related to Ps,th and Pb,th by

PERth = 1− (1− Ps,th)Ns ' 1− (1− Pb,th)Nb (4.5)

Consequently,

Ps,th = 1− (1− PERth)1/Ns (4.6)

and Pb,th ' Ps,th/ log2Mj . For coded transmission, an empirical fitting between the ASNR

and the PER may be employed, such as that given in [45, eq. (5)].

4.3 Performance Metrics

4.3.1 Statistics of the Ranked Users

The scheduler will rank the SNRs of all L users in a descending order and select no more

than Nc users for transmission. For convenience, throughout this chapter we refer to the user
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with the Nth largest instantaneous SNR as the (N)th user.

In the presence of channel estimation errors, the scheduler will rank the effective SNRs of

all L users, γ̃1, . . . , γ̃L, in a descending order and select no more than Nc users for transmission.

This is reasonable because the receiver could only rank the users based on the channel estima-

tion ĉk(p) instead of the actual channel coefficient ck(p) which is unknown to the scheduler.

Throughout this chapter, we will assume that the channel estimation is not perfect. The result

for the perfect CSI case can be obtained as a special case when ρ = 1 in (4.3).

For scheduling purpose, it is critical to evaluate the SER, BER and throughput of the (N)th

user (N = 1, . . . , L), denoted by Ps,(N), Pb,(N), and C(N), respectively. Here, the evaluation of

the SNR of the (N)th user is similar to but different from a problem of GSC studied in the

literature [36,88,90,125] and in Chapter 3. In GSC, the first N largest SNRs are combined per

MRC rule. For multiuser scheduling, however, we are interested in the marginal statistics of

the Nth largest SNR only, for N = 1, . . . , L. To approach this problem, we employ the MGF

approach and tailor a result for order statistics given in [36] and in section 3.3 to the GSMuD

model. Define the MGF for the Nth largest effective SNR as

Φγ̃(N)
(s) = E[exp(−γ̃(N)s)] (4.7)

We also define

γ̃t(a1, . . . , aN−1, aN ) = a1γ̃(1) + a2γ̃(2) + . . .+ aN γ̃(N), (4.8)

where ak ∈ (0, 1) for k = 0, 1, . . . , N . When ak = 1 for all k, γ̃t is the output SNR for GSC.

We also observe that γ̃(N)(s) = γ̃t(0, . . . , 0, 1), which is useful for GSMuD. Below, we derive

the MGF of γ̃t(a1, . . . , aN−1, aN ), which yields the MGF of γ̃(N)(s) as a special case.

For convenience, we will rewrite the complementary incomplete MGF in (3.3) as

Φγ̃l(s, x) =
∫ ∞
x

fγ̃l(y)e−sydy (4.9)

where fγ̃l(x) is the PDF expression for the instantaneous SNR γ̃l for the lth user (before the

SNR ranking). Note that Φγ̃l(s, 0) = Φγl(s), and Φγ̃l(0, x) = 1 − Fγ̃l(x), where Fγ̃l(x) =∫ x
0 fγ̃l(y)d y is the CDF of the SNR γ̃l. For simplicity, we also call Φγ̃l(s, x) the truncated

MGF (TMGF) in this chapter.
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Using a result on the order statistics of GSC given in [36, 46], we may express the joint

PDF of [γ̃(1), γ̃(2), . . . , γ̃(N)] as (for the i.n.d. users)

fγ̃(1),...,γ̃(N)
(y1, y2, . . . , yN ) =

∑
n1,...,nN

n1 6=n2 6=... 6=nN

fγ̃n1
(y1)fγ̃n2

(y2) · · · fγ̃nN (yN )
L∏

l′=N+1

Fγ̃nl′
(yN ),

(4.10)

where y1, . . . , yN , fγ̃nl (y), and Fγ̃nl′
(y) are defined similar to that of Section 3.3, only here it

represents the statistics from different users instead of diversity branches.

Using a procedure similar to that for deriving the output SNR for GSC [36], we obtain the

MGF of γ̃t(a1, . . . , aN ) =
∑N

k=1 akγ̃(k) valid for i.n.d. users as

Φγ̃t(s) =
∑

n1,...,nN∈I

∫ ∞
0

e−saNxfγ̃nN (x)

[
N−1∏
l=1

Φγ̃nl
(als, x)

][
L∏

l′=N+1

Fγ̃nl′
(x)

]
dx. (4.11)

where fγ̃nl (y) is the PDF for the output SNR in the nlth user, l = 1, . . . , L. Fγ̃nl′
(y) is the

CDF of the SNR of the nl′th user. For example, for Nakagami-m fading channels,

fγ̃l(x) =
1

Γ(ml)
(ml/¯̃γl)mlxml−1 exp(−mlx/¯̃γl),

where ¯̃γl and ml are the symbol ASNR and m-parameter of the lth user, respectively. In∑
n1,...,nN∈I , I is the set for all combinations of {n1, . . . , nL} in which the subset {n1, . . . , nN}

are the indices of N users with largest SNRs. Note that
∑

n1,...,nN∈I is equivalent to∑
n1,...,nN

n1<n2<...<nN−1

∑
nN

, which was defined in [36]. Therefore, the summation in (4.11) contains(
L
N

)
terms in total.

By setting a1 = · · · = aN−1 = 0 and aN = 1 in (4.11), we obtain the MGF of γ̃(N) as

Φγ̃(N)
(s) =

∑
n1,...,nN∈I

∫ ∞
0

e−sxfγ̃nN (x)×

[
N−1∏
l=1

(1− Fγ̃nl (x))

][
L∏

l′=N+1

Fγ̃nl′
(x)

]
dx, (4.12)

where we used the equality that Φγ̃nl
(0, x) = 1 − Fγ̃nl (x). The PDF, CDF and TMGF of γ̃l

are easy to derive and related with those of CSI γl as

fγ̃l(x) =
1
βk
fγl(x/βk)

Φγ̃l(s, x) = Φγl(sβk, x/βk)

Fγ̃l(x) = Fγl(x/βk) = 1− Φγl(0, x/βk)
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Here, fγl , Φγl , and Fγl are the PDF, TMGF and CDF of the actual channel SNRs. Their

expression over several types of fading channels have been derived and tabulated in Table 3.1.

The marginal PDF of γ̃(N), fγ̃(N)
(x), may be obtained as follows. We compare (4.12) with the

definition of the MGF Φγ̃(N)
(s) =

∫∞
0 e−sxfγ̃(N)

(x)dx, and obtain the marginal PDF of γ̃(N) as

fγ̃(N)
(x) =

∑
n1,...,nN∈I

fγ̃nN (x)×

[
N−1∏
l=1

(1− Fγ̃nl (x))

][
L∏

l′=N+1

Fγ̃nl′
(x)

]
. (4.13)

For L i.i.d. users, (4.12) simplifies to

Φγ̃(N)
(s) =

(
L

N

)
N ×

∫ ∞
0

e−sxfγ̃(x)[1− Fγ̃(x)]N−1Fγ̃(x)L−Ndx. (4.14)

Consequently, the PDF of γ̃(N) for i.i.d. users is

fγ̃(N)
(x) =

(
L

N

)
Nfγ̃(x)[1− Fγ̃(x)]N−1Fγ̃(x)L−N . (4.15)

Equations (4.13) and (4.15) will be used to calculate the statistics of the (N)th user with

adaptive modulation.

4.3.2 Outage probabilities

The outage probability for the (N)th user with pre-specified SNR threshold γ̃th is defined

as POT,γ̃(N)
(γ̃th) =

∫ γ̃th
0 fγ̃(N)

(γ̃)dγ̃. Using a CDF evaluation technique [125] and the MGF of

γ̃(N) derived in this chapter, an efficient formula to evaluate POT,γ̃(N)
(γ̃th) can be obtained, as

POT,γ̃(N)
(γ̃th) ' eA/2

2Q
∑

β=±(π/2−π/M)

Q∑
q=0

(
Q

q

)N+q∑
n=0

(−1)n

cn

× Re
(

Φγ̃(N)

(
−A+ jn2π

2
√
γ̃th

)
/(A+ jn2π)

)
+ EA,N,Q, (4.16)

where EA,N,Q is a remainder term that vanishes when Q becomes large, A is a constant to

ensure the fast convergence of (4.16), and cn = 1 for n = 0; cn = 0.5 for n = 1, . . . , N +Q.

For i.i.d. users, using the integration of parts we obtain a closed-form expression for

POT,γ̃(N)
(γ̃th) as

POT,γ̃(N)
(γ̃th) =

(
L

N

)
N

N−1∑
n=0

(−1)n
(
N − 1
n

)
× [Fγ̃(γ̃th)]L−N+n+1/(L−N + n+ 1). (4.17)
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4.3.3 BER Performance Under Given Thresholding

We now derive the BER performance of the individual user with an arbitrary given set

of thresholds. For the (N)th user with adaptive modulation and J operating modes, let the

thresholds of the effective SNRs be denoted by [γ̃th,0(N), γ̃th,1(N), . . . , γ̃th,J(N), γ̃th,J+1(N)],

where γ̃th,0(N) = 0 and γ̃th,J+1(N) = ∞. The constellation sizes for the J modes are given

by [M1,M2, . . . ,MJ ]. When γ̃(N) ∈ [γ̃th,j(N), γ̃th,j+1(N)), the jth mode is selected with con-

stellation size Mj , for j = 1, . . . , J . When γ̃(N) ∈ [0, γ̃th,1(N)), no data is transmitted for the

(N)th user.

To determine the SNR threshold set [γ̃th,1(N), . . . , γ̃th,J(N)), we need to evaluate the

probability given by

Pj(N) = Pr{γ̃(N) ∈ [γ̃th,j(N), γ̃th,j+1(N))}

=
∫ γ̃th,j+1

(N)

γ̃th,j(N)
fγ̃(N)

(γ̃)dγ̃. (4.18)

For the general case,

Pj(N) = POT,γ̃(N)
(γ̃th,j+1(N))− POT,γ̃(N)

(γ̃th,j(N)) (4.19)

where POT,γ̃(N)
(γ̃th) is the outage probability given in (4.17).

For the i.i.d. case we obtain

Pj(N) =
∫ γ̃th,j+1

(N)

γ̃th,j(N)

(
L

N

)
Nfγ̃(x)[1− Fγ̃(x)]N−1 × Fγ̃(x)L−Ndx

=
(
L

N

)
N

N−1∑
n=0

(−1)n
(
N − 1
n

)
×
∫ γ̃th,j+1

(N)

γ̃th,j(N)
fγ̃(x)[Fγ̃(x)]L−N+ndx. (4.20)

Define Ik =
∫ r2
r1
f(x)[F (x)]kdx. Using the integration by parts we can show that:

Ik = [F (x)]k+1 |r2r1 − k
∫ r2

r1

f(x)[F (x)]kdx = [F (r2)]k+1 − [F (r1)]k+1 − kIk, (4.21)

and thus Ik = 1
1+k

[
[F (r2)]k+1 − [F (r1)]k+1

]
. Substituting this result into (4.20), we get a

closed-form expression as

Pj(N) =
(
L

N

)
N

N−1∑
n=0

(−1)n

(L−N + n+ 1)

(
N − 1
n

)
×
[
[F (γ̃th,j+1(N))]L−N+n+1 − [F (γ̃th,j(N))]L−N+n+1

]
. (4.22)
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For example, Pb,j(γ̃) = Q(
√

2γ̃) for BPSK and for M -QAM,

Pb,j(γ̃) ' 4
log2M

[(
1− 1√

M

)
Q(
√
gqam,j γ̃)−

(
1− 1√

M

)2

Q2(
√
gqam,j γ̃)

]
,

where gqam,j = 3
2(Mj−1) is BER of Mj-QAM in the non-fading channel, and fγ̃(N)

(γ̃) is the PDF

of γ̃(N) given by (4.13) and (4.15) for i.n.d. and i.i.d. cases, respectively.

We now derive the BER for the jth AMC mode (j ≥ 0). Note that j = 0 is the case

of no transmission, j = 1 is BPSK mode, and for j ≥ 2 square Mj-QAM modulation is

used. This result is essential to the design of AMC because one of its design criteria is to set

P̄b,j(N) = Pb,th for all j except j = 0 (i.e., the case of no transmission.).

The average BER of the (N)th user in the jth mode (with signal size Mj) is given by

P̄b,j(N) =
1

Pj(N)

∫ γ̃th,j+1
(N)

γ̃th,j(N)
Pb,j(γ̃)fγ̃(N)

(γ̃)dγ̃, (4.23)

where Pb,j(γ̃) is the conditional BER in the non-fading channel.

If the jth mode uses BPSK modulation, using (4.23), we have:

P̄b,j(N) =
1

Pj(N)

∫ γ̃th,j+1
(N)

γ̃th,j(N)
Q(
√

2γ̃)fγ̃(N)
(γ̃)dγ̃. (4.24)

Using the MGF-based approach, we obtain the closed-form BER as

P̄b,j(N) ' 1
πPj(N)

{∫ π/2

0

[
Φγ̃(N)

(
1/sin2 θ, γ̃th,j(N)

)
− Φγ̃(N)

(
1/sin2 θ, γ̃th,j+1(N)

)]
dθ

}
,

(4.25)

where Φγ̃(N)
(s, γ̃th) is the TMGF of γ̃(N) defined in (4.9).

Similarly, for square M -QAM, assuming Gray coding, we obtain the BER for mode j as

P̄b,j(N) ' 1
Pj(N) log2M

{
4
π

(
1− 1√

M

)∫ π/2

0

[
Φγ̃(N)

( gqam

sin2 θ
, γ̃th,j(N)

)
− Φγ̃(N)

( gqam

sin2 θ
, γ̃th,j+1(N)

)]
dθ − 4

π

(
1− 1√

M

)2

×∫ π/4

0

[
Φγ̃(N)

( gqam

sin2 θ
, γ̃th,j(N)

)
−Φγ̃(N)

( gqam

sin2 θ
, γ̃th,j+1(N)

)]
dθ
}
. (4.26)

Thus, we can evaluate P̄b,j(N) readily for different types of fading channels. Next adopting

a technique proposed in [45], we propose our scheduling algorithms that searches the SNR

thresholds for the (N)th user.
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4.4 GSMuD Algorithms

In this section, we propose a novel AMC design algorithm that searches for the optimal sets

of thresholds for switching AMC modulations for the (N)th user. We based our algorithm on

the performance results obtained in last section and the obtained threshold sets will maintain

the designed performance level (in terms of BER) for each ranked user.

4.4.1 AMC Design Algorithm

For each ranked user, we perform the same operation to obtain the AMC threshold set.

We only need to run this algorithm once during the initialization phase, or when the channel

statistics changes significantly. For example, once the threshold set is obtained for the (N)th

user, it will be used in each time slot for the user that ranked in the Nth place during that

time slot. When the rank of the user is changed in the next time slot, no additional calculation

is necessary to determine a new threshold set. Rather the scheduler simply assigns the AMC

modulation according the the threshold set for the new rank that this user now holds.

We take similar approach in finding the threshold sets as first proposed in [76, 77]. We

describe our algorithm as:

1. Initially, set j = J and γ̃th,J+1(N) =∞.

2. For each j, search for the unique γ̃th,j(N) ∈ [0, γ̃th,j+1(N)] which satisfies

P̄b,j(N) = Pb,th(N). (4.27)

Here P̄b,j(N) can be calculated using (4.25) and (4.26) for BPSK and QAM formats,

respectively.

3. If j > 1, set j = j − 1, and go to step 2; otherwise, stop.

We underscore that since the conditional BER in (4.25) or (4.26) is a monotonically de-

creasing function as γ̃th,j(N) increases, a simple numerical search can be implemented to solve

(4.27) with low complexity. For example, we can utilize the binary search strategy to expedite

the procedure.
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The total average BER of the (N)th user is given by

P̄b(N) =

∑J
j=1 P̄b,j(N)Pj(N)Rj∑J

j=1 Pj(N)Rj
.

where Rj = log2(Mj). Note that generally P̄b,j ≤ Pb,th is true. The throughput of the (N)th

user is computed by

C(N) =
J∑
j=1

RjPj(N). (4.28)

4.4.2 Power Allocation Algorithm with Minimum-rate Constraint

In our scheme, no more than Nc strongest users out of L are scheduled for transmission.

For low ASNRs, some users among the Nc strongest users may have a low throughput rate

(say C(N) ≤ 0.1 bits/s/Hz). For this case, it is more beneficial to prohibit such users from

transmission, and re-allocate their power to the users with stronger channel SNRs, and thus

may achieve a higher sum throughput. Here, we propose a useful suboptimal power allocation

scheme. This algorithm has a low complexity because it does not rely on instantaneous SNRs

of all the users, but uses the statistical SNR knowledge of the first Nc ranked users and

distribute the total power equally. Thus, when C(N) ≤ Cth, where Cth is a pre-specified rate

threshold, the (N)th user is prohibited from transmission even when N ≤ Nc, and its originally

allocated transmission power is re-allocate to the former N − 1 users. This testing is repeated

until C(Nc,eff) ≥ Cth ( Nc,eff users are finally scheduled) or N = 0 (no transmission can be

scheduled). Note that Nc,eff could be zero.

Thus, it only has to be updated when the channel statistics for some users changes, for

example, due to the long-term Lognormal shadowing or dynamic changes of the number of

users. It requires the same amount of channel statistical knowledge as that required for the

AMC design.

Assume the total normalized power for all the Nc users is PT = 1. The normalized power

assigned to the (N)th user is given by PN = 1/Nc for N = 1, . . . , Nc. Let Nc,eff be the effective

number of users which are scheduled for channel access after power allocation. Assume all the

L users are ranked in a descending order according to their SNRs.
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1. Initialization: let N = Nc and Nc,eff = Nc.

2. Let PN = 1/Nc,eff. Assume the total transmit power is PT = 1 and the equal power allo-

cation. The effective receive SNR of the (N)th user (N ≤ Nc,eff) after power allocation is

modified to γ̃(N),eff = γ̃(N)/Nc,eff. The PDF, TMGF and CDF of γ̃(N),eff are, respectively,

given by

fγ̃(N),eff
(x) = Nc,efffγ̃(N)

(xNc,eff) (4.29)

Φγ̃(N),eff
(s, x) = Φγ̃(N)

(s/Nc,eff, xNc,eff) (4.30)

Fγ̃(N),eff
(x) = 1− Φγ̃(N),eff

(0, x) (4.31)

Thus, we simply need to re-calculate Pj(N), P̄b,j(N) and C(N) based on γ̃(N),eff instead

of γ̃(N). Calculate the effective ASNR (including effect of PN ) for the (N)th user, given

by ¯̃γN = PN ¯̃γs = ¯̃γs/Nc,eff.

3. Following the AMC Algorithm, find the SNR thresholds of the (N)th user. If C(N) ≥ Cth,

go to step 4; If C(N) ≤ Cth, that is, the data rate for the (N)th user is smaller than a

pre-specified threshold, then release its power allocation to the other N − 1 users with

larger SNRs, and let Nc,eff = Nc,eff − 1, then go to step 4.

4. Let N = N−1. If N ≥ 1, go to step 2; otherwise, return Nc,eff and C(N), N = 0, . . . , Nc,eff,

and the power allocation algorithm is done.

Note that in the extreme case, Nc,eff could be zero if the throughput is low for all the Nc

users.

For comparison purpose, we can show that the sum throughput of all the Nc,eff users is

computed by

Ctot,Nc,eff
=

Nc,eff∑
N=1

C(N) =
Nc,eff∑
N=1

J∑
j=1

RjPj(N).

The sum throughput of a conventional CDMA system which unwittingly schedules all the

L users for simultaneous transmission regardless of channel conditions is given by

Cconv,L =
L∑

N=1

J∑
j=1

RjP̃j(N).
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where P̃j(N) = Pr{γ̃N ∈ [˜̃γth,j(N), ˜̃γth,j+1(N))} and {˜̃γth,j(N)}Jj=0 is the SNR threshold set

for the AMC design of the un-ordered SNR γ̃N . P̃j(N) may be calculated based on (4.19) by

replacing γ̃(N) with γ̃N for each user, and also under a constant total power constraint that

PT =
∑L

N=1 PN = 1. We note that the statistical power allocation (which is based on the

ordered SNR-set and cuts off low-rate transmissions) that we proposed for the GSMuD scheme

is hard to be included in the conventional system.

Finally, we define the GSMuD gain obtained as

GNc,eff = Ctot,Nc,eff /Cconv,L (4.32)

4.5 Numerical Examples

Figure 4.1 BER of 16-QAM vs. bit ASNR per user for all the L = 6 users
over i.i.d and i.n.d. Nakagami-m fading channels. For i.i.d.
users, m = 2.1; for the i.n.d. users, m = [3, 2.6, 2.2, 1.8, 1.4, 1],
and their ASNRs differ by 1 dB from the strongest user to the
weakest one.

We provide some numerical examples to illustrate the performance of generalized selection

multiuser scheduling with CSI and ICE, respectively, over Rayleigh and Nakagami-m fading

channels, including the results of error rates and multiuser throughput.
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Figure 4.2 Throughput of every user vs. symbol ASNR over an
i.i.d. Nakagami-m fading channel with L = 6, Cth = 1,
PERth = 10−2, and m = 2.1.

First we investigate the BER performance of GSMuD under perfect CSI conditions. In Fig.

4.1 we present the BER of 16-QAM vs. bit ASNR for i.i.d. (shown in solid lines) and i.n.d. (in

dashed lines) Nakagami-faded users with SNR ranking. For i.i.d. users in Nakagami channels,

m = 2.1; and for i.n.d. users, the ASNRs differ by 1 dB from the strongest user to the weakest

one, and following the same order, m = [3, 2.6, 2.2, 1.8, 1.4, 1]. For a fair comparison between

the cases of i.i.d. and i.n.d. users, we assume the sum ASNRs
∑L

k=1 γ̄k are identical for both

cases.

Fig. 4.1 shows that asN increases the performance of the (N)th user degrades substantially,

and the BER gap between the strongest (first) user and the weakest user is large. The (N)th

user in the i.n.d. case has a substantially worse BER performance than in the i.i.d case,

especially for a larger N .

Next, we study the throughput performance of GSMuD with adaptive modulation, which

uses BPSK and M -QAM formats with symbol sizes [2,4,16,64] for J = 4 operating modes, and

the packet length is Np = 128 for all the Nc users. We emphasize that we assume a normalized

total power PT = 1, and thus
∑Nc,eff

N=1 pN = PT = 1 and PN = 1/Nc,eff.
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Figure 4.3 Sum throughput vs. Nc for different channel ASNRs over an
i.i.d. Rayleigh fading channel with ICE. L = 6, Cth = {0, 0.5},
and PERth = 10−3.

In Fig. 4.2, we present each user’s throughput C(N) among the first (strongest) Nc = 4

users in CSI case. For this and all the examples below, the ASNR is defined as the symbol

ASNR per user before the statistical power allocation. The total symbol ASNR is defined as∑Nc,eff

N=1 pN γ̄N,eff = γ̄, We observe that for the case of Nc = Nc,eff and without SNR-ranking, we

have

Nc,eff∑
N=1

pN γ̄N,eff =
Nc∑
N=1

pN γ̄N = γ̄, (4.33)

i.e., the total symbol ASNR after power allocation is equivalent to the ASNR per user before

power allocation. The result in Fig. 4.2 illustrates that stronger users have larger throughput

rates. For large ASNRs, the throughput saturates to log2 64 = 6, as expected.

In Fig. 4.3 we present the sum throughput vs. Nc for different channel ASNRs, for

Cth = 0 (without the minimum-rate constraint) and 0.5 (with the minimum-rate constraint),

respectively for ICE case. Here and throughout the rest of this chapter, we assume a MMSE-

CE, with parameters F = 6 and PPS = 1 (i.e., the pilot symbols use the same transmission

power as the data symbols). We assume that the channel information feedback mechanism is
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Figure 4.4 Sum throughput rate vs. channel ASNR over an i.i.d.
Nakagami-m fading channel with perfect CSI (in solid lines)
and ICE (in dashed lines). L = 6, Cth = 0.5, PERth = 10−3,
and m = 2.1.

perfect in this case, with no delay or quantization error. Note that when Cth = 0.5 Nc,eff < Nc

may be true, while Cth = 0, Nc,eff = Nc always holds. The result shows that the case of

Cth = 0.5 has a larger sum throughput than Cth = 0 for all the ASNRs shown in Fig. 4.3.

This is because for low-to-medium ASNRs splitting a given transmission power among more

users may cause a lower rate for every user and result in a lower sum throughput. As the

ASNR increases, however, scheduling more users becomes beneficial to the sum rate under the

AMC assumption that highest modulation schemes attainable are upper bounded.

We show the sum throughput of all the Nc users vs. the channel ASNR per symbol over

an i.i.d. Nakagami-m fading channel (with L = 6, Cth = 1, and m = 2.1) in Fig. 4.4, for both

CSI and ICE case. Only for low ASNRs (e.g., γ̄ ≤ 10 dB) scheduling more users (Nc > 1,

CDMA-type) has little improvement over scheduling one user (Nc = 1, TDMA-type). As the

ASNR increases, however, the improvement in the sum throughput becomes significant for a

larger Nc than Nc = 1.

The effect of the target PER (PERth) on the sum rate over an i.i.d. Rayleigh fading
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Figure 4.5 Sum throughput of all the Nc users vs. target PER over an
i.i.d. Rayleigh fading channel, with L = 6, Nc = 3, Cth = 0.1.

channel (with L = 6, Nc = 3 and Cth = 0.1) is studied in Fig. 4.5. As PERth increases, the

multiuser throughput increases for all the ASNRs shown in the figure. A more strict (lower)

target PER causes a lower sum rate. But compared to the sum rate for the less-stringent PER

requirement, the reduction is quite smooth and tolerable.

Finally, the GSMuD gain is presented in Fig. 4.6. The result shows that for medium

ASNRs the scheduling gain is significant. For high ASNR, the GSMuD gain vanishes due to

the discrete-rate AMC.

4.6 Summary

In this chapter, we proposed a novel multiuser scheduling algorithm with practical AMC

and under different fading models. In the GSMuD scheme, the scheduler ranks a total of L users

awaiting for transmission by their received SNRs and selects no more than Nc number of users

with the largest SNRs for channel access. We considered the scenario where the scheduler

has perfect CSI as well as the case where only imperfect channel estimation is available at

the receiver. We analyzed the error rates, the individual- and sum-rates of the proposed
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Figure 4.6 Multiuser scheduling gain (dB) vs. symbol ASNR over an i.i.d.
Rayleigh fading channel, with L = 5, Nc = 1 ∼ 4, and Cth = 1.

GSMuD schemes taking into account the effects of adaptive modulation, power allocation

with minimum-rate-constraint, the accuracy of the channel estimation and generalized fading

channels.

Numerical results show that as the ASNR increases, assigning more than one users for

simultaneous transmission (for a fixed total transmission power) significantly improves the

sum throughput compared to the TDMA-type of scheduling (i.e., SMuD). However, given the

total BS transmission power and the ASNR, there are an optimum number of users Nc,opt to

be scheduled, which is a function of channel statistics and packet error rate threshold. We

also observed that in ICE case, under the block static fading assumption, the adverse effect of

channel estimation errors on the spectral efficiency tends to decrease as the ASNR increases,

and the performance of GSMuD with MMSE-CE approaches that with perfect CSI for high

ASNRs. We defined the scheduling gain as a performance metric and found that the gain with

respect to conventional CDMA systems is significant for low-to-medium ASNRs.

We observed that there are several interesting problems that we haven’t covered in this

chapter regarding the proposed GSMuD scheme. Equal power allocation strategy is used to
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distribute total transmitting power to selected users. Apparently it’s not the optimal way

of allocating power. In the next chapter, we will introduce optimal power allocation schemes

that distribute total system power among scheduled users to provide maximal total capacity for

GSMuD. Fairness is an important issue in multiuser scheduler. The GSMuD proposed in this

chapter is based on absolute SNR ranking. It would be an interesting enhancement to GSMuD

if normalized SNR are used instead that will provide considerations of user’s average channel

condition (e.g. distance from the BS) in the scheduler design. It would also be of interest to

measure quantitatively the statistics of fairness (e.g., the channel access time) under proposed

GSMuD schemes. Those problems will be proposed and discussed in following chapters as

enhancements to the GSMuD scheme.
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CHAPTER 5. OPTIMAL POWER ALLOCATION FOR GSMuD

5.1 Introduction

Multiuser scheduling for cross-layer design has been a hot topic in recent years [73–77]. In

selection multiuser diversity [64, 78], the scheduler assigns the channel access to the user with

the largest SNR among the L users awaiting transmission. We extend the SMuD to GSMuD

in Chapter 4, where the Nc out of L users are selected, and propose a suboptimal equal power

allocation (EPA) scheme. In this chapter, we provide a low-complexity optimal solution to the

following WCDMA parallel access rate-maximizing problem: Given a total of L users and no

more than Nc (Nc ≤ L) users can be scheduled using non-interfering parallel channels (e.g.,

using orthogonal spreading codes), for a fixed spreading gain Ns and a sum power PT , how to

allocate power to users to achieve the maximum sum rate? We propose a low-complexity opti-

mal solution using optimal waterfilling (WF) power allocation for the Nc selected users, which

ensures that the allocated power to every user optimally matches the channel conditions. Two

optimal power allocation algorithms for the GSMuD are derived, namely (i) one-dimensional

(1-D) optimal WF power allocation along the channels given a fixed peak power at each time

slot; and (ii) two-dimensional (2-D) optimal waterfilling along both the time and the channels

given a fixed average total power (energy). The channel distribution information (CDI) of

all the users is required for the second case, but not needed for the first case. For the 2-D

WF, we further require that the multiuser channels are wide-sense stationary and ergodic. We

note that in this chapter, the sum-rate optimization is based on orthogonal parallel channels

brought forth by spreading codes, and is different from the downlink broadcasting channel

(BC) sum-rate optimization problem [71, 72]. For the latter, the multiuser superposition cod-

ing (non-orthogonal channels) and successive interference cancelation at the receivers have to
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be exploited.

Numerical results show that the 2-D WF yields the largest sum rate, while equal power

allocation (EPA) along the channels proposed in Chapter 4 is near-optimal for many cases of

practical interest. However, At low average SNRs (ASNRs) and as Nc increases, EPA may

allocate too much transmit power into weak channels and the performance gap to the WF

algorithms becomes larger. Our results provide a benchmark and useful tools for the analysis

and design of WCDMA and UWB parallel-scheduling multiuser diversity schemes.

5.2 Signal Model

In a CDMA downlink there are a total of L users awaiting channel assignment using Nc

parallel orthogonal channels (Nc ≤ L). The spreading gain Ns of the considered CDMA

system may be larger than Nc to provide a capability to suppress external interference. As

in Chapter 4, the fading channels for different users may follow different fading types, such as

Rayleigh, Rician, Nakagami-m, Nakagami-q, and Weibull channels [125], and may furthermore

experience non-identical mean signal strengths and channel parameters. The channel SNR of

user k is given by γk = |hk|2/Nk, where hk and Nk are the complex channel gain and the noise

power of user k, respectively. The average channel SNR for user k is defined as by γ̄k = E[γk].

We consider the GSMuD scheme to select users for transmission introduced in Chapter

4. In this scheme the scheduler ranks the instantaneous channel SNRs of all the L users in a

descending order, denoted by γ(1), γ(2), . . . , γ(L) (with γ(1) ≥ γ(2) ≥ · · · ≥ γ(L)), where γ(k) is the

kth largest SNR. The scheduler chooses the Nc users with the largest SNRs for simultaneous

transmission in the next available time slot (e.g., a packet duration). The receiver SNR of the

kth strongest user is given by P(k)γ(k) = γ(k)PT /Nc (k = 1, . . . , Nc).

In this chapter, we will propose a general approach to provide optimal power allocation to

users based on their channel statistics in the framework of the proposed GSMuD scheme. Our

goal is to design the power allocation criteria to maximize the possible theoretically achievable

rates and thus we don’t consider any specific AMC scheme like the one proposed in Chapter 4.

Instead we take a more generalized approach of treating the information-theoretical capacity
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for each user as the actual rate provided by the AMC. Throughout this chapter, we also assume

that we have CSI at the receiver and that the SNR feedback process is perfect. Next we present

the model for the power allocation optimization problem for GSMuD.

We assume that in the GSMuD scheme, the total transmission power at the base station

is PT (t), which is split among the Nc scheduled users, and Pk(t) is the power allocated to the

user with the kth largest channel SNR (k = 1, . . . , Nc). Thus,
∑Nc

k=1 Pk(t) = PT (t).

Instead of the EPA scheme for power allocation proposed in Chapter 4, we propose schemes

of optimally distributing the total system power to users based on their channel conditions.

We consider the sum rate maximization for two different cases: (1) The sum power at any

time t is bounded by fixed PT (t), i.e.,
∑Nc

k=1 Pk(t) ≤ PT (t) and PT (t) = PT for all t’s. (2)

Only the average sum power is bounded by PT , i.e., Et[
∑Nc

k=1 Pk(t)] = Et[PT (t)] ≤ PT , where

Ex[·] denotes the average with respect to (w.r.t.) x. Here PT (t) is the total power allocated to

all users in time slot t, and may fluctuate in each time slot according to channel conditions.

Simply speaking, these two scenarios correspond to the scenario where the system is peak power

limited (case 1), or the system is average power (energy) constrained (case 2). Apparently, an

energy constrained system would provide more headroom to GSMuD power allocator than the

power limited system. We will show in Section 5.4 that indeed case 2 will provide larger total

system sum rate than case 1.

Now we formally present our optimization problem. Under the fixed sum power constraint

(case 1), the optimization problem to maximize the sum rate of the Nc selected users can be

posed as:

max
P1(t),...,PNc (t)

Bw
Ns

Nc∑
k=1

C(k)(Pk(t)) s.t.
Nc∑
k=1

Pk(t) ≤ PT (5.1)

where Bw is the transmission bandwidth, and Ns is the spreading gain. C(k)(Pk(t)) is the

normalized rate (in nats/s/Hz) for the (k)th user at time t and is given by

C(k)(Pk(t)) = log(1 + Pk(t)γ(k)(t)) (5.2)

Here, log(x) is the natural logarithm. The goal of (5.1) is to maximize the instantaneous sum

rate for every t. A 1-D waterfilling algorithm (along the channels) will be designed for this
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case.

Under the average sum power constraint (case 2), we propose to maximize the time-average

sum rate of the Nc selected users. The optimization problem is expressed as:

max
P1(t),...,PNc (t)

Bw
Ns

Et

[
Nc∑
k=1

C(k)(Pk(t))

]
s.t. Et

[
Nc∑
k=1

Pk(t)

]
≤ PT (5.3)

Since the average sum power constraint is less stringent than case 1, we may implement the

WF algorithm along both the time and the channels, resulting in a 2-D WF algorithm. The

2-D WF results in a larger sum rate than the 1-D WF, but requires some channel distribution

knowledge (such as the PDF of the channel SNRs) for its implementation. It also requires the

multiuser channels to be stationary and ergodic.

5.3 Optimal Power Allocation Algorithms for a-GSMuD

In the equal power allocation scheme for GSMuD, Pk(t) = PT /Nc for k = 1, . . . , Nc and

all t. The capacity for the (k)th user is (the index t in the absolute ranked SNR γ(k)(t) is

suppressed for brevity)

C(k), EPA =
∫ ∞

0
log(1 +

PT
Nc

y)fγ(k)
(y)dy. (5.4)

where fγ(k)
(y) is the PDF of the kth largest SNR. Using the result in (4.13), we write the PDF

for the CSI case as

fγ(k)
(x) =

∑
n1,...,nk∈I

fγnk (x)

[
k−1∏
l=1

(1− Fγnl (x))

]
·

[
L∏

l′=k+1

Fγnl′
(x)

]
, (5.5)

where fγn(x) and Fγn(x) are the PDF and CDF of the nth user (unranked), respectively.

The sum capacity is then Ctot, EPA =
∑Nc

k=1C(k), EPA . This algorithm is, however, subopti-

mal since the waterfilling power allocation can provide a larger capacity. To provide optimal

solutions to (5.1) and (5.3), in the following subsections we derive two optimal WF algorithms

for the GSMuD under the fixed- and the average-sum-power constraints, respectively. We also

analyze their performances assuming multiple i.n.d.-faded users.
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5.3.1 1-D Waterfilling over the User Channels

We assume that the total power is a fixed constant PT (t) = PT for any time slot t. Define

the Lagrangian

L(λ(t), P1(t), . . . , PNc(t)) =
Bw
Ns

Nc∑
k=1

log

(
1 +

Pk(t)|h(k)(t)|2

Nk

)
− λ̃(t)

(
Nc∑
k=1

Pk(t)− PT

)
(5.6)

which may be rewritten as

L(λ(t), P1(t), . . . , PNc(t)) =
Nc∑
k=1

log(1 +
Pk(t)|h(k)(t)|2

Nk
)− λ(t)

(
Nc∑
k=1

Pk(t)− PT

)
(5.7)

where λ(t) = Ns
Bw
λ̃(t). We observe that the factor Ns

Bw
does not affect the WF power allocation

result.

Taking the derivative of (5.7) w.r.t. Pk(t) and setting the result to zero, we have the

Kuhn-Tucker condition for the optimal power allocation as:

∂L
∂Pk(t)

=

 = 0 if Pk(t) > 0

≤ 0 if Pk(t) = 0.
(5.8)

Define (x)+ = max(0, x), and the optimal power allocation satisfies (5.8) is obtained as:

P ∗k (t) =
(

1
λ(t)

− 1
γ(k)(t)

)+

s.t.
Nc∑
k=1

P ∗k (t) = PT , (5.9)

where P ∗k (t) denotes the waterfilling optimal solution of Pk(t). At each time t, we have to find

a waterfilling threshold λ(t) which is time-varying, and then solve for P ∗k (t).

After some manipulations, we obtain an equation equivalent to (5.9)

λ(t) = Nc(t)

/PT +
Nc(t)∑
k=1

1
γ(k)(t)

 s.t. λ(t) ≤ γ(k)(t), (5.10)

Let the number of scheduled users after 1-D WF at time t be denoted by Nc,eff(t), which is

the largest integer satisfying γ(Nc,eff(t))(t) ≥ λ(t). All the selected channels’ SNRs have to meet

the WF threshold λ(t), i.e., γ(k)(t) ≥ λ(t). Nc,eff(t) is a random variable and 1 ≤ Nc,eff(t) ≤ Nc

holds. Equation (5.10) should be solved iteratively until λ(t) ≤ γ(k)(t) is true for all k (k =

1, . . . , Nc,eff(t)). We start from allocating power to all Nc users, and solve for λ(t); if one of
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the uers power turns out to be zero according to (5.10), we will reduce the Nc,eff by one and

redistribute the power.

Once Nc,eff(t) is obtained, we can rewrite the (5.10) as

λ(t) = Nc,eff(t)

/PT +
Nc,eff(t)∑
k=1

1
γ(k)(t)

 , (5.11)

The algorithm for 1-D WF is summarized below (Algorithm I):

1. For each t, let Nc,eff(t) = Nc.

2. Find λ(t) using (5.11).

3. Check if λ(t) ≤ γ(Nc,eff(t))(t) is true. If true, go to step 4. Otherwise, remove γ(Nc,eff(t))(t)

from the set {γ(1)(t), . . . , γ(Nc,eff(t))(t)}, set Nc,eff(t) = Nc,eff(t)− 1, and go to step 2.

4. The λ(t) and Nc,eff(t) are now obtained. The allocated power for the (k)th user, P ∗k (t),

is given by (5.9), for k = 1, . . . , Nc,eff(t). �

The instantaneous capacity for the (k)th user with 1-D WF is given by

C(k),WF-1D (t) = log(1 + P ∗k (t)γ(k)(t)).

and the instantaneous sum capacity is

Ctot,WF-1D (t) =
Bw
Ns

Nc,eff(t)∑
k=1

C(k),WF-1D (t). (5.12)

We observed that the instantaneous sum capacity is a function of time slot t and may

fluctuate with it. The time-average sum rate is a better metric for comparison purposes

because it’s the effective sum rate. Assuming the channels for all users are ergodic, we have

the time-average sum rate of the proposed 1-D WF scheme as:

Ctot,WF-1D = Et[Ctot,WF-1D (t)]

= E{γ(k)(t)}
Nc
k=1

[
Bw
Ns

Nc∑
k=1

log[1 + P ∗k (t)γ(k)(t)]

]
. (5.13)
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Thus,

Ctot,WF-1D =
∫ ∞

0
· · ·
∫ ∞

0︸ ︷︷ ︸
Nc fold

Bw
Ns

Nc∑
k=1

log[1 + p∗k(y)yk]fγ(1)
(y1)dy1 · · · fγ(Nc)

(yNc)dyNc (5.14)

where p∗k(y) = (1/λ(y)− 1/yk)
+, y = [y1, . . . , yNc ]T , and we denote γ(k) as yk for notational

simplicity. Here, the waterfilling threshold λ(y) is the solution to (5.11). Since λ(y) is a

function of vector y and so an Nc-fold nested integral has to be evaluated. For the case of

Nc = 1, the 1-D WF reduces to the EPA, and the waterfilling becomes unnecessary.

5.3.2 2-D Waterfilling over the User Channels and Time

We propose a statistical 2-D WF algorithm over both the channels and the time. We name

it “statistical” because the statistical channel knowledge is required in the waterfilling design

and we assume that the channel is stationary and ergodic.

Define the Lagrangian

L(λ(t), P1(t), . . . , PNc(t)) =
Nc∑
k=1

log(1 + Pk(t)|h(k)(t)|2/Nk)− λ(t)

(
Nc∑
k=1

Pk(t)− PT (t)

)
(5.15)

where, as in (5.7), λ(t) = Ns
Bw
λ̃(t), and PT (t) is the sum power for time t satisfying Et[PT (t)] =

PT .

Taking the derivative of (5.15) w.r.t. Pk(t) and setting the resulting equalities to zero, we

obtain

P ∗k (t) = (1/λ(t)− 1/γ(k)(t))
+ s.t.

Nc∑
k=1

P ∗k (t) = PT (t). (5.16)

which leads to
∑Nc

k=1(1/λ(t) − 1/γ(k)(t))+ = PT (t). Taking the time average of this equality

we have

Et

[
Nc∑
k=1

(1/λ(t)− 1/yk(t))+

]
= Et[PT (t)] = PT (5.17)

With the assumption of ergodic channels, the time average of the left side of (5.17) is replaced

by the ensemble average of the channel SNRs and we obtain

Nc∑
k=1

Eγk [(1/λ− 1/γk)+] =
Nc∑
k=1

∫ ∞
λ

(1/λ− 1/y)fγ(k)
(y)dy = PT (5.18)
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We observe that the solution λ to (5.18) is a constant rather than a time-varying variable. Since

γk > 0 holds and (5.18) is a monotonically non-increasing function of λ, an efficient numerical

search algorithm can be designed for solving (5.18). When all the users are Rayleigh-faded,

a closed form expression for (5.18) can be derived and efficient methods to evaluate it can be

found in Appendix 5.A.

The statistical optimal 2-D power allocation algorithm is given below (Algorithm II).

1. Find λ using (5.18).

2. For each time slot t, the power allocated to the (k)th user is given by

P ∗k,WF-2D (t) = (1/λ− 1/γ(k)(t))
+. (5.19)

�

The 2-D WF algorithm above involves two steps, a design stage (to find λ) and an implemen-

tation stage (to find P ∗k,WF-2D
(t)). The first step of the 2-D WF is more complex than that

in the 1-D WF algorithm, but is done only once (given the channel statistics for all users are

unchanged) while the 1-D WF requires solving λ(t) for every t. The second step of 2-D WF

has the same complexity to that of 1-D WF.

After λ is obtained, the time-average rate of the (k)th user is given by C(k),WF-2D =

Et[Ck,WF-2D (P ∗k (t))]. With the assumption of ergodic channels, the time average is replaced by

the ensemble average of the channel SNRs, and we obtain

C(k),WF-2D = Et[
Bw
Ns

log(1 + P ∗k,WF-2D (t)γ(k)(t))]

=
∫ ∞

0

Bw
Ns

log(1 + P ∗k,WF-2D (t)y)fγ(k)
(y)dy

=
∫ ∞
λ

Bw
Ns

log (y/λ) fγ(k)
(y)dy. (5.20)

Assume Rayleigh fading channels. Let x = y/λ. A closed-form expression for (5.20) is derived
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as

C(k),WF-2D =
Bw
Ns

∫ ∞
1

log (x) fγ(k)
(xλ)λdx (5.21)

=
Bw
Ns

∑
n1,...,nk∈I

∑
τ∈JL−k

λ · sign(τ)
γ̄nk

∫ ∞
1

(log x) exp(−xλB)dx (5.22)

=
Bw
Ns

∑
n1,...,nk∈I

∑
τ∈JL−k

sign(τ)
γ̄nk

E1(λB)/B (5.23)

where B is given by (5.28) and we exploited the equality that
∫∞

1 log(y) exp(−yA)dy =

E1(A)/A, where E1(A) is defined in Appendix 5.A.

The sum rate of the Nc selected users is given by

Ctot,WF-2D =
Nc∑
k=1

C(k),WF-2D , (5.24)

which is the maximum sum rate achievable under the average sum power constraint.

We may also use the time average of (5.19) for power allocation, leading to

P ∗k,WF-2D = Et[P ∗k,WF-2D (t)] = Et[(1/λ− 1/γ(k)(t))
+] =

∫ ∞
λ

(1/λ− 1/y)fγ(k)
(y)dy. (5.25)

This results in a sub-optimal fixed-power statistical power allocation scheme. Some comments

for Algorithm II are in order: (1) The λ is optimized by 2-D WF w.r.t to both user channels

(index k) and time (t). The λ may be interpreted as the WF threshold, and it becomes a

constant for different t’s and k’s based on the statistical knowledge of the channel SNRs and the

assumption that the channels for all users are ergodic. Waterfilling among the channels is taken

into account by the SNR order statistics γ(k). (2) In the implementation phase (step 2), the

total allocated power for each time t PT (t) =
∑Nc

k=1 P
∗
k,WF-2D

(t) may not be a constant. With

the assumption of the ergodic channels, the average sum power over a long time approaches

the constant E[PT (t)] = PT . (3) For the case of single channel access and without multiuser

diversity, the 2-D WF algorithm reduces to the 1-D time-domain WF power allocation studied

in [71, Sec. 5.4.6].

5.4 Numerical Results

We provide some numerical results for the GSMuD (L,Nc), combined with the derived

1-D and 2-D WF power allocation algorithms and the EPA, assuming multiuser orthogonal
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CDMA downlink channels with different fading types and i.n.d. statistics. For all the i.n.d.

channels considered in this section, we assume the average channel SNRs differ successively by

1.5 dB from the strongest user to the weakest one, i.e., γ̄k+1 = γ̄k10−1.5/10, for k = 1, . . . , L−1.

Furthermore, following the same branch order m = [3, 2.6, 2.2, 1.8, 1.4, 1] in the 6-user i.n.d.

Nakagami-m channels. We assume the average (or the instantaneous) sum power is given by

PT = 1 for different Nc’s and L’s. All the rate results are plotted after converting nats/s/Hz to

bits/s/Hz (i.e., the log to the log2 scale). For simplicity, we normalize the sum rate by Bw/Ns.

Figure 5.1 Individual rate of GSMuD (with 2-D WF and EPA) vs. ASNR
with 6 users over the i.n.d. Nakagami fading channels.

In Fig. 5.1, we present the individual capacity of GSMuD (with 2-D WF and EPA) vs.

ASNR with 6 users over i.n.d. Nakagami fading channels. The ASNR in the x-axis is defined

as the average channel SNR over all the users, i.e., γ̄ = 1
L

∑L
l=1 γ̄l. The result shows that

compared to 2-D WF, the EPA gives a lower capacity for the strongest user but a higher

capacity for the 3rd strongest user. As the ASNR increases, the EPA yields the same capacity

as the 2-D WF.

Fig. 5.2 presents simulation and analytical results for the sum capacity of GSMuD (with 1-

D WF) vs. ASNR for six independent and identically distributed (i.i.d.) Rayleigh-faded users.
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Figure 5.2 Simulation and analytical results for the sum capacity of
GSMuD (with 1-D WF) vs. ASNR for 6 i.i.d. Rayleigh-faded
users.

The analytical curves (given by (5.14)) excellently agree with the simulated ones (obtained

by Algorithm I). Given a fixed sum power PT and that each user has the same transmission

bandwidth, splitting power between more users (Nc = 3) increases the sum rate compared to

scheduling one user only (Nc = 1).

We compare the performance of the three power allocation algorithms (2-D WF, 1-D WF,

and EPA) in Fig. 5.3 assuming i.n.d. Rayleigh fading (L = 6). The result shows that the 2-D

WF has the highest rate for all the cases, and the EPA has the lowest one. The EPA with

Nc = 3 yields even a lower sum rate than that with Nc = 1 for ASNRs less than 0 dB. For

Nc = 1, the EPA has the same rate as the 1-D WF, as expected. However, for Nc = 3 the

1-D WF possesses a larger rate than the EPA. The performance advantage of the 2-D WF

is most pronounced at low ASNRs, and the gaps between the 2-D WF, the 1-D WF and the

EPA reduce as the ASNR increases. For Fig. 5.4 we assume the same system parameters as

for Fig. 5.3, but now with a higher channel ASNRs, and Nc = 1, 2, 3. Fig. 5.4 shows that as

the channel ASNR becomes high, all the three algorithms give almost identical sum rates.

In Fig. 5.5 we compare the sum rates of the 2-D WF and the EPA vs. Nc assuming 8 i.n.d.
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Figure 5.3 Sum capacity of GSMuD (with 2-D WF, 1-D WF, and EPA)
vs. channel ASNR with 6 i.n.d. Rayleigh-faded users.

Rayleigh-faded users. We observe that increasing Nc over some threshold values (different for

different ASNRs) degrades the performance of the EPA. For high ASNRs, EPA gives almost

the same performance as the 2-D WF except for the case of a large Nc .

5.5 Conclusions

The equal power allocation scheme discussed in Chapter 4 provides a low-complexity so-

lution for parallel channel access multiuser scheduling and power assignment. In this chapter,

we proposed optimal power allocation schemes to achieve the maximum sum rate for GSMuD,

namely 1-D or 2-D WF power allocation. The 1-D WF power allocation distribute powers

among the user channels given a fixed total power at each time slot. The 2-D optimal statis-

tical WF power allocation assigns power along both packet (time slot) and the user channels

given the average total power, under the assumption of ergodic user channels and most suitable

for scenarios where user channel statistics do not change over time. If user channel distribution

changes over time significantly, 1-D WF algorithm will provide better performance because it

allocates power over per time slot. Simulation results have verified the accuracy of our analy-
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Figure 5.4 Sum rate of GSMuD (with 2-D WF, 1-D WF, and EPA) vs.
ASNR with 6 users over the i.n.d. Rayleigh fading channels.

sis. Numerical results have shown that the performance advantage of 2-D WF over EPA is the

largest for low SNRs and the gap increases with Nc but decreases with the SNR. The sum rates

of the GSMuD 2-D and 1-D WF algorithms are monotonically non-decreasing as Nc increases,

but that of the EPA may decrease due to the (equal) splitting of power into weak channels.

The presented results provide a benchmark and useful tools for parallel scheduling multiuser

diversity.

However, a tradeoff for providing maximal sum-rate is the fairness among users waiting for

transmission. The proposed 1-D WF and 2-D WF schemes will undoubtedly favor those users

with stronger channels and will assign more power to them. In the next chapter, we will explic-

itly address the issue of fairness among users with different fading channel models and gains

under GSMuD scheme. We will propose the fairness-enhancing normalized-SNR based ranking

for GSMuD and compare some of the fairness and throughput metrics with the absolute-SNR

based ranking for GSMuD. We observed through numerical analysis in this chapter that the

EPA is near-optimal for many cases of practical interest. Thus in the next chapter, we will

adopt the EPA strategy in our analysis on the throughput performance comparison of the two
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Figure 5.5 Sum rate of GSMuD (with 2-D WF and EPA) vs. Nc with
different ASNRs for 8 users over the i.n.d. Rayleigh fading
channels.

approaches.

5.6 Appendix 5.A Closed-form Evaluation of (5.18) for Rayleigh Fading

Case

To efficiently solving for (5.18) for Rayleigh-faded users, we use (5.5) and have

fγ(N)
(y) =

∑
n1,...,nN∈I

exp(−y/γ̄nN )
γ̄nN

·

[
N−1∏
l=1

exp(−y)/γ̄nl)

][
L∏

l′=N+1

(
1− exp(−y/γ̄n′l)

)]
. (5.26)

Define the expansion

L∏
l′=N+1

(
1− exp(−y/γ̄n′l)

)
=

∑
τ∈JL−N

({
1
γ̄nl

}L
l=N+1

) e−y|τ |sign(τ),

where JL−N (
{

1
γ̄nl

}L
l=N+1

) is a set of expansion elements defined for
{

1
γ̄nl

}L
l=N+1

as:

JL−N

({
1
γ̄nl

}L
l=N+1

)
=

{
0, T1

({
1
γ̄nl

}L
l=N+1

)
, . . . , TL−N

({
1
γ̄nl

}L
l=N+1

)}
. (5.27)
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Here, Tk

({
1
γ̄nl

}L
l=N+1

)
=
{

(−1)k
∑

nl1 ,nl2 ,...,nlk

1
γ̄nlk

}
, and

∑
nl1 ,nl2 ,...,nlk

refers to all the

possible
(
L−N
k

)
combinations of choosing k elements out of the set

{
1
γ̄nl

}L
l=N+1

.

For example, for the first two terms, we have

T1

({
1
γ̄nl

}L
l=N+1

)
=
{
− 1
γ̄nN+1

, . . . ,− 1
γ̄nL

}
,

and

T2

({
1
γ̄nl

}L
l=N+1

)
=
{

1
γ̄nN+1

+
1

γ̄nN+2

,
1

γ̄nN+1

+
1

γ̄nN+3

, . . . ,
1

γ̄nL−1

+
1
γ̄nL

}
.

Thus, JL−N

({
1
γ̄nl

}L
l=N+1

)
contains

(
L−N

0

)
+
(
L−N

1

)
+ . . .+

(
L−N
L−N

)
= 2L−N elements in total.

We have

fγ(N)
(y) =

∑
n1,...,nN∈I

·
∑

τ∈JL−N

sign(τ)
γ̄nN

exp(−yB),

where

B = |τ |+
N∑
l=1

1
γ̄nl

, (5.28)

and JL−N is a shorthand for JL−N (
{

1
γ̄nl

}L
l=N+1

). After some manipulations, a closed-form

expression (5.18) is obtained as

Nc∑
N=1

∫ ∞
λ

(1/λ− 1/y)fγ(N)
(y)dy =

Nc∑
N=1

∑
n1,...,nN∈I

∑
τ∈JL−N

sign(τ)
γ̄nN

(
exp(−λB)

λB
− E1(λB)

)
(5.29)

where E1(B) =
∫∞

1
exp(−yB)

y dy is the exponential-integral function [66,80], which has a closed-

form expression.
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CHAPTER 6. FAIRNESS IN GSMuD

6.1 Introduction

Fairness is an important issue to multiuser systems. The SMuD and the proposed GSMuD

schemes try to maximize the multiuser sum rate but may cause the channel access fairness

problem because users with the stronger average channel strengths may monopolize the channel

assignment resources [65, 66, 75, 79]. In [65], the authors analyzed the performance of a fair

scheduling algorithm called proportional fair scheduling (PFS) where the scheduler will select

the current user based on its rate in the recent history. It’s proved in the paper that if all users

have the same ASNRs, PFS will indeed always select the user with largest instantaneous SNR.

A proportional fair scheduler is also proposed in the downlink design of IS-856 (CDMA 2000

EV-DO) by Tse [44]. Authors in [66, 79, 81] studied another kind of fair scheduling algorithm

where instead of selecting the user with the largest absolute SNR for transmission at each time

slot, the user with the largest normalized SNR (n-SNR) will be selected for transmission.

Multiuser diversity schemes that employed the n-SNR to rank the users to provide propor-

tional fairness were proposed and studied in [66, 75, 79–81]. It is known that the normalized-

SNR-based ranking for the SMuD provides proportional fairness for the non-identically dis-

tributed (with different channel variance) Rayleigh-faded users [66,79–81]. In [80], the channel

throughput and fairness performance metrics of the SMuD over Rayleigh fading channels were

analyzed. Furthermore, the channel access statistics, including the average channel access rate

(AAR), the average access time (AAT), and the average waiting time (AWT), were evaluated.

In the above-mentioned schemes and related performance analysis in terms of throughput

and fairness metrics, only SMuD schemes are considered where exactly one user is allowed to

communicate in any time slot. In [67], the authors considered an asymptotic analysis for a
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fair scheduler that could schedule more than one user at a time slot in CDMA fashion, where

fairness accounts for providing certain channel access time fractions among the users. That is,

equal expected throughput is not necessarily guaranteed, rather the access to the channel. This

will mean that the scheduler is resource fair in the sense that each user will asymptotically

be allocated the same amount of energy. This result is only applicable to Rayleigh fading

channels.

In Chapter 4, we study the CDMA downlink channel where a total of L users are waiting

for downlink access and each of them uses a single spreading code with a fixed spreading gain.

We point out that in order to provide better fairness (e.g., to reduce the waiting time of every

user) than SMuD a single user cannot occupy all the channels (or that multi-code assignment

is excluded), and this is important especially for slow fading channels. To improve the fairness

issue for the SMuD and absolute-SNR based ranking GSMuD schemes, we propose and study

the normalized-SNR based ranking GSMuD scheme in this chapter. We will also solve the

important question of how good the fairness metrics are for both a-SNRs and n-SNRs based

ranking? We note that the GSMuD method may also be useful for OFDMA system. For

example, a user can be assigned Nc best sub-channels among L channels that are available in

OFDMA.

Our major fairness-related performance analysis results for both a-SNRs and n-SNRs based

ranking with GSMuD may be summarized as follows: (i) We derive the PDF and MGF statistics

of the ordered n-SNRs for all the L users; (ii) We analyze the level-crossing rate (LCR) and

the average fade duration (AFD) of each user; (iii) We derive fairness metrics and channel

access statistics, including the average channel access probability (AAP), the AAR, AAT and

AWT of every ranked user in the system with GSMuD.

The AAP is closely related to the proportional fairness. The AAR, AAT and AWT perfor-

mance of GSMuD is important to the design of system parameters, such as the transmission

packet size and the buffer length. For example, a longer AAT allows a larger data frame size,

while a longer AWT of a user will cause a larger access delay and also affect the buffering

process. Consequently, these metrics should be taken into account in the cross-layer design.
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Similar to the analysis in Chapter 4, our results are applicable to the case that the different

users’ channels are i.n.d distributed where they may have non-identical statistics, or follow dif-

ferent families of fading distributions including Rayleigh, Rician and Nakagami-m or Weibull

models.

Our analytical and simulation results show that the GSMuD, even with a-SNR ranking,

significantly improves the channel access probability and fairness for all the users than SMuD.

The GSMuD with normalized SNR ranking (n-SNR GSMuD) will further improve the fairness

for all the users in general i.n.d. channels. Compared to the round robin scheduling without

SNR ranking, the n-SNR GSMuD achieves a substantially higher sum rate while maintaining

fairness. The presented scheme is useful for the parallel channel access multiuser scheduling

design, and the analytical results provide a benchmark and mathematical tools to understand

the effects of different channel and system parameters on the scheduling performance.

6.2 Signal Model

In a CDMA downlink there are a total of L users awaiting channel assignment using Nc

parallel orthogonal channels (Nc ≤ L). The spreading gain of the considered CDMA system

may be larger than Nc to provide a capability to suppress external interference. As in Chapter

4, the fading channels for different users may follow different fading types, and may furthermore

experience non-identical mean signal strengths and channel parameters. The channel SNR of

user k is given by γk = |hk|2/Nk, where hk and Nk are the complex channel gain and the noise

power of user k, respectively. The average channel SNR for user k is defined as by γ̄k = E[γk].

We denote the scheme to select users for transmission introduced in Chapter 4 as the a-

SNR-GSMuD scheme. In this scheme the scheduler ranks the instantaneous channel SNRs of all

the L users in a descending order, denoted by γ(1), γ(2), . . . , γ(L) (with γ(1) ≥ γ(2) ≥ · · · ≥ γ(L)),

where γ(k) is the kth largest SNR. The scheduler chooses the Nc users with the largest SNRs

for simultaneous transmission in the next available time slot (e.g., a packet duration). The

receiver SNR of the kth strongest user is given by P(k)γ(k) = γ(k)PT /Nc (k = 1, . . . , Nc).

In this chapter, we are more concerned with the performance metrics on fairness of the
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proposed GSMuD scheme and thus we assume that we have CSI at the receiver and that the

SNR feedback process is perfect. The case for ICE can be easily obtained by putting in the

ICE effective-SNR distribution into our results. We will first present the n-SNR-based ranking

algorithm for GSMuD and then discuss the sets of fairness metrics we will investigate later in

this chapter. Intuitively, n-SNR-based ranking algorithm provides better fairness for users at

the price of a reduced sum-rate. Thus we will also investigate the sum-rate of the proposed

n-SNR-based GSMuD and compare the result with that of the a-SNR-based GSMuD. For

tractability of performance analysis, we consider the equal transmit power allocation of the

selected users shown in Chapter 5. Equal power allocation for GSMuD has a small performance

loss compared to the optimal waterfilling power allocation in many cases of practical interest. A

thorough performance analysis of both a-SNR-based and n-SNR-based GSMuD is implemented

in this chapter.

6.2.1 n-SNR based Ranking

In the a-SNR-GSMuD scheme proposed in Chapter 4, the scheduler didn’t explicitly address

the fairness issues in that users with stronger channel gain will likely monopolize the channel

access. The total system sum-rate can be maximized by adopting the 1-D or 2-D waterfilling

power allocation strategy as discussed in Section 5.3. For comparison, in the round robin

scheme, at each time slot Nc users are selected for access by turns at the base station. This

scheme ensures perfect fairness but does not employ multiuser diversity and consequently

provides a less total sum-rate.

By combining GSMuD and n-SNR ranking, both multiuser diversity gain and fairness can

be achieved. Let γ̃k = γk/γ̄k be the normalized SNR of the kth user. Here γ̄k is the statistical

mean SNR for the kth user, which could be different for different users even if they follow the

same fading model. Ranking γ̃l (l = 1, . . . , L) in a descending order as γ̃(1), . . . , γ̃(L), where

γ̃(1) ≥ . . . ≥ γ̃(L). The users with the Nc largest n-SNRs are scheduled for transmission.

The purpose of n-SNR ranking is to ensure improved fairness for all the users. We show

later in this chapter that n-SNR GSMuD ensures a uniform AAP for all the users for Rayleigh
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fading channels, and provides a near-uniform AAP for more general fading types (such as

Nakagami-m, -q, or Rician distributions).

6.2.2 Performance Metrics to be Studied

Next we define the performance metrics to be studied for GSMuD (with both a-SNR and

n-SNR ranking). They include LCR and AFD of each ranked user, AAP, degree of fairness,

AAR, AAT, and AWT.

1. The level crossing rate (LCRα(R)) is defined as the number of times that signal envelope

(the square root of SNR, α =
√
γ, assuming constant noise power) α crosses level R at

the positive direction in a unit time, and the average fade duration (AFD) is the average

duration when α stays below R, and is given by Tα(R) = Pr(α < R)/LCRα(R), where

Pr(α < R) is the probability of α < R. In Fig. 6.1, adapted from Fig 3.10 in [72], the

LCR can be calculated by counting how many times it has crossed the level R in a unit

time (in the example, 2 times) and AFD can be obtained by averaging the durations t1

and t2 when signal envelope level is below the level R. These two metrics measure the

properties of the underlying fading channel.

2. We denote the AAPk as the average channel access probability for the kth user. A fair

scheduling requires the AAPk to be identical for all k. It is related to the degree of

fairness (DoF) for each user. The DoF for user k in the SMuD is defined as [80, 87]

FAk = − log(AAPk)/ log( 1
L), and 1

L is the AAP for the perfect fair case where each user

has equal probability of accessing the channel. We observe that when FAk > 1, user k

has less than average chance of accessing the channel. The sum DoF
∑L

k=1 AAPkFAk

lies between 0 and 1, with 1 denoting the perfect fairness. The DoF metric for GSMuD

will be defined and studied in Section 6.3.1.

3. AARk is the average rate (or frequency) that user k (unranked) gains channel access.

AATk is the average duration each time when user k has channel access. AWTk is the

average waiting time for user k to gain channel access again after releasing it [80].



www.manaraa.com

101

4. We will calculate sum-rate for the proposed ranking algorithms as the metric to gauge

system performance from another perspective. Throughout this chapter the defined

throughput and sum-rate has been normalized by the B/Ns, where B is the total band-

width and Ns is the spreading gain.

Figure 6.1 Illustration of LCR and AFD

6.3 Performance of a-SNR-based Ranking

Using the results obtained in Section 4.3, we now will formulate and derive the fairness-

related performance metrics for the a-SNR-based GSMuD schemes.

6.3.1 Throughput and Fairness

The channel throughput of the (N)th user is given by

C(N) =
∫ ∞

0
log2(1 + P(N)x)fγ(N)

(x)dx

=
∫ ∞

1
(log2 y)·

∑
n1,...,nN∈I

fγnN

(
y − 1
P(N)

)[N−1∏
l=1

(1− Fγnl

(
y − 1
P(N)

)][ L∏
l′=N+1

Fγnl′

(
y − 1
P(N)

)]
dy.

(6.1)

Generally speaking, (6.1) has to be evaluated using the numerical technique, such as the

trapezoidal summation.
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When all the L users experience Rayleigh fading channels, using the similar results in

Section 5.6, we derive a closed-form formula as

C(N),Ray =
∑

n1,...,nN∈I
·
∑

τ∈JL−N

sign(τ)
γ̄nNA

log2 e · exp(A)E1(A) (6.2)

whereA = (
∑N

l=1
1
γ̄nl

+|τ |)/P(N), P(N) = PT /Nc, and JL−N is a shorthand for JL−N

({
1
γ̄nl

}L
l=N+1

)
(defined in (5.27)), and E1(A) =

∫∞
1

exp(−yA)
y dy is the exponential-integral function [66, 80],

which has a closed-form expression.

The fairness metric is studied next. For the GSMuD (L,Nc), since the access probability

averaged over all the users is Nc/L instead of 1/L, we propose to define the DoF for user k as

FAk = log(AAPk)/ log(Nc/L). (6.3)

The sum DoF of all the users is given by:

FAall =
L∑
k=1

AAPkFAk =
L∑
k=1

AAPk log(AAPk)/ log(Nc/L).

The AAP for user k (for k = 1, . . . , L) is given by the probability that the a-SNR γk is

larger than the Ncth largest SNR among those of the remaining L− 1 users. Thus,

AAPk = Pr{γk > γ(Nc),k̃
} (6.4)

where Pr{A} is the probability of event A, and γ(Nc),k̃
is the Ncth largest SNR among the

remaining L− 1 users (excluding user k). Some integral-form and closed-form expressions for

AAPk are given in Appendix 6.A.

We may evaluate the individual throughput of user k (unranked) as

Ck =
∫ ∞

0
log2(1 + Pkx)fγk(x)

[∫ x

0
fγ(Nc),k̃

(y)dy
]
dx (6.5)

where fγ(Nc),k̃
(y) is the PDF of γ(Nc),k̃

and is given in Appendix 6.A. Assuming all Rayleigh-

faded users, using a procedure similar to that for deriving (6.37) appeared in Appendix 6.A,

we have a closed-form capacity formula for Rayleigh channels as

Ck,Ray =
∑

n1,...,nNc∈Ik̃

∑
τ∈JL−Nc−1

log2 e ·
sign(τ)
γ̄nNc γ̄kB

[
eA1E1(A1)/A1 + eA2E1(A2)/A2

]
(6.6)
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where A1 = 1/(Pkγ̄k), Pk = PT /Nc, A2 = (1/Pk)(B+ 1/γ̄k), and B =
∑Nc

l=1
1
γ̄nl

+ |τ |. JL−Nc−1

is a shorthand for JL−Nc−1

({
1
γ̄nl

}L−1

l=Nc+1
, nl 6= k

)
, which follows the definition in (5.27) and

contains 2L−Nc−1 elements.

6.3.2 LCR and AFD

The LCR and AFD are important second-order channel statistics which depict the channel

fading rate and dynamic channel changes, and their performance evaluation has been an inter-

esting topic of study [80,93–96]. Derivation of the LCR and AFD will also help the evaluation

of user channel access metrics in Section 6.3.3.

Define αk =
√
γk to be the signal envelop. Let α̇k denote the first-order time deriva-

tive of αk, and we denote fα(N),α̇(N)
(αk, α̇k) as their joint PDF. To obtain the number of

crossings in a unit time of the signal envelop over the level R, we first derive two interim

values. From Fig. 6.1, we observe that the expected amount of time αk falls in the interval

[R,R + dαk] with the slope α̇k falling in the range [α̇k, α̇k + dα̇k] over the time duration dt

is T = fα(N),α̇(N)
(αk, α̇k)dαkdα̇kdt. When the slope is α̇k, the amount of time it takes for the

signal envelop to cross from level R to R + dαk is P = dαk/α̇k. We thus have the expected

number of crossings over the level R with the slope between α̇k and α̇k + dα̇k in a unit time

as the ratio T/P = α̇kfα(N),α̇(N)
(αk, α̇k)dα̇kdt. When averaged over time and the distribution

of α̇k, we derive the LCR of the Nth largest amplitude, α(N), at the signal level R as:

LCRα(N)
(R) =

∫ ∞
0

ẋfα(N),α̇(N)
(R, ẋ)dẋ (6.7)

where fα(N),α̇(N)
(x, ẋ) is the joint PDF of signal envelop α(N) and its first-order derivative

α̇(N), and is given by (6.41) (the independent case) and (6.43) (the non-independent case) in

the Appendix 6.B respectively.

It is known that α̇k follows a zero-mean Gaussian distribution for Rayleigh, Rician and

Nakagami-m channels, and its PDF is given by [80,93–96]

fα̇k(α̇) =
1√

2πσ̇α̇k
exp

(
− α̇2

2σ̇2
α̇k

)
(6.8)
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where σ̇2
α̇k

is the variance of α̇k. Assume the Jakes’ Doppler fading spectrum. It is known that

σ̇2
α̇k

= π2f2
Dop,kΩk, where fDop,k is the Doppler fading bandwidth of the kth user, and Ωk is

the variance of the underlying Gaussian process. For the Rayleigh, Rician [94] and Nakagami-

m [95] fading channels, we have Ωk = γ̄k, Ωk = γ̄k/(1 + Kk), and Ωk = γ̄k/mk, respectively,

where Kk and mk are the Rice-K factor and m-parameter for user k. In these channels, α̇k

and αk are independent. For Weibull and Nakagami-q fading channels α̇k and αk are not

independent. For the Weibull fading channels, α̇k still follows a Gaussian distribution with

the PDF shown in (6.8), where σ̇α̇k can be obtained from [96, eq. (9)]. For the Nakagami-q

channels, a joint PDF expression of α̇k and αk was given in [97, eq.(11)].

Below, we use σ̇2
k as a shorthand for σ̇2

α̇k
. For i.n.d.-faded users over Rayleigh, Rician and

Nakagami-m fading channels, using (6.41) we derived a closed-form expression of (6.7) as

LCRα(N)
(R) =

∑
n1,...,nN∈I

fαnN (R)

[
N−1∏
l=1

(1− Fαnl (R))

][
L∏

l′=N+1

Fαnl′
(R)

]∫ ∞
0

ẋfα̇nN (ẋ)dẋ

=
∑

n1,...,nN∈I
fαnN (R)

[
N−1∏
l=1

(1− Fαnl (R))

][
L∏

l′=N+1

Fαnl′
(R)

]
σ̇nN /

√
2π (6.9)

The second equation is using the properties of the Gaussian distribution of α̇k. Furthermore,

LCR results for GSMuD over Weibull and Nakagami-q fading channels can be similarly derived

using (6.7), (6.43), and results in [96, eq. (9)] and [97, eq.(11)], respectively.

The AFD is given by Tα(N)
(R) = Pr{α(N) < R}/LCRα(N)

, where Pr{α(N) < R} is simply

the CDF (or the outage probability) of α(N). Using a procedure similar to that for deriving

(5.5) we obtain the PDF of α(N) as

fα(N)
(y) =

∑
n1,...,nN∈I

fαnN (y)

[
N−1∏
l=1

(1− Fαnl (y))

][
L∏

l′=N+1

Fαnl′
(y)

]
. (6.10)

where fαnN (y) and Fαnl (y) are the PDF and CDF of αnN , respectively, and are the stan-

dard Rayleigh, Rician or Nakagami-m distribution PDF and CDF respectively for the differ-

ent fading models. For i.n.d. Rayleigh-faded users, we derived a closed-form expression for
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Pr{α(N) < R} as

Pr{α(N) < R} = Fα(N)
(R) =

∫ R

0
fα(N)

(y)dy

=
∑

n1,...,nN∈I

∑
τ∈JL−N

1
γ̄nN

[
1− exp

(
−R2

(
N∑
l=1

1
γ̄nl

+ |τ |

))]/[
N∑
l=1

1
γ̄nl

+ |τ |

]
(6.11)

where JL−N is a shorthand for JL−N

({
1
γ̄nl

}L
l=N+1

)
. The AFD can now be evaluated.

6.3.3 Channel Access Statistics

The AAR, AAT and AWT are important performance metrics affecting the scheduling and

the cross-layer design. For example, AWT is pertaining to the waiting time of users awaiting

scheduling and its value will influence the buffer length design and the expected scheduling

delay. AAT on the other hand will affect the choice of optimal packet size. In this section,

AAR is used to obtain AAT and AWT, and can be obtained in similar fashion as LCR. It

should be noted that AAR, AAT, and AWT are fairness metrics for multiuser channels and

they are related but are different from the fading channel metrics LCR and AFD.

When AAPk (derived in Section 6.3.1 and Appendix 6.A) and AARk are known, the AAT

and AWT are, respectively, given by

AATk = AAPk/AARk, AWTk = (1−AAPk)/AARk. (6.12)

Now, we derive AARk. Define rk = αk/α∗, where α∗ = α(Nc),k̃
= √

γ(Nc),k̃
, and γ(Nc),k̃

is the Ncth largest SNR among the L − 1 users (excluding user k). We use α̇∗ to denote the

first-order time derivation of α∗. The AAR of the kth user, AARk, is the crossing rate (at the

positive direction) of the kth users’ signal envelop at the level rk = 1. Thus,

AARk =
∫ ∞

0
ṙfrk,ṙk(r = 1, ṙ)dṙ, (6.13)

where ṙk is the first-order time derivation of rk, and frk,ṙk(r, ṙ) is the joint PDF of rk and ṙk.

As discussed in Section 6.3.2, we assume that αk and α̇k are independent, which is valid for

Rayleigh, Rician and Nakagami-m fading channels. The result for Nakagami-q and Weibull

channels may be obtained by using a similar procedure after a proper modification.
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Based on [80, eq. (9)], frk,ṙk(r, ṙ) is given by

frk,ṙk(r, ṙ) =
∫ ∞

0

∫ ∞
−∞

α2
∗fαk(α∗r)fα̇k(ṙα∗ + α̇∗r)fα̇∗,α̇∗(α∗, α̇∗)dα̇∗dα∗ (6.14)

where fα∗,α̇∗(α∗, α̇∗) is the joint PDF of α∗ and α̇∗. We show that the PDF fα∗(x) of α∗ is

given by

fα∗(x) = fγ(Nc),k̃
(x)

=
∑

n1,...,nNc∈Ik̃

fαnNc
(x)

[
Nc−1∏
l=1

(1− Fαnl (x))

] L−1∏
l′=Nc+1

Fαnl′
(x)

 , (6.15)

and by using a procedure similar to that for deriving (6.41), we have

fα∗,α̇∗(α∗, α̇∗) =
∑

n1,...,nNc∈Ik̃

fαnNc
(α∗)×

[
Nc−1∏
l=1

(1− Fαnl (α∗))

] L−1∏
l′=Nc+1

Fαnl′
(α∗)

 fα̇nNc (α̇∗)

(6.16)

Equation (6.13) (with (6.14) and (6.16)) involves a three-fold integral. For the most general

case of i.n.d. users with different fading parameters we can reduce (6.13) to a single integral.

Furthermore, for Rayleigh-faded users closed-form AAR expression are obtained. The proce-

dure and results are detailed in Appendix 6.C.

6.4 Performance of n-SNR-based Ranking

In this section, we propose the n-SNR-based GSMuD algorithms and derive the perfor-

mance and fairness related metrics for comparison with a-SNR-based GSMuD.

6.4.1 SNR Statistics

The normalized-SNR based ranking is introduced to provide proportional fairness. To

evaluate the throughput and fairness performance of n-SNR-GSMuD, the output absolute

SNR γ̂(N) has to be analyzed. Here we use the hat in γ̂(N) to denote the a-SNR of the user

with Nth largest n-SNR γ̃(N).

Now we derive the statistics of the a-SNR γ̂(N). When we rank the n-SNR set {γ̃nl}Ll=1,

namely γn1/γ̄n1 , . . . , γnk/γ̄nk , . . . , γnL/γ̄nL , we may use γ̄nN as an anchor element, and reformu-

late the n-SNR-ranking problem as: Compare the set γ̄nNγn1/γ̄n1 , . . . , γnN , . . . , γ̄nNγnL/γ̄nL ,
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and choose the Nth largest element. Note that the new set may be written as wn1γn1 , . . . ,

γnN , . . . , wnLγnL (where wnl = γ̄nN /γ̄nl) and it is simply a weighted version of the original SNR

set γn1 , . . . , γnN , . . . , γnL . When the nN th user has the Nth largest n-SNR, the event may

be written as {γnN ≤ γ̄nN γ̃(1), . . . , γnN ≤ γ̄nN γ̃(N−1), γnN ≥ γ̄nN γ̃(N+1), . . . , γnN ≥ γ̄nN γ̃(L)}

or equivalently {γnN ≤ w(1)γ̂(1), . . . , γnN ≤ w(N−1)γ̂(N−1), γnN ≥ w(N+1)γ̂(N+1), . . . , γnN ≥

w(L)γ̂(L)}.

Following the same procedure for deriving (4.12), we derive the MGF of γ̂(N) for the general

case of i.n.d. users as

Φγ̂(N)
(s) =

∑
n1,...,nN∈I

∫ ∞
0

e−sxfγnN (x)

[
N−1∏
l=1

(
1− Fγnl

(
xγ̄nl
γ̄nN

))][ L∏
l′=N+1

Fγnl′

(
xγ̄nl′
γ̄nN

)]
dx

(6.17)

Here, fγnl , and Fγnl are PDF, CDF of the nlth unranked user a-SNR respectively.

The PDF of γ̂(N) can be derived as

fγ̂(N)
(x) =

∑
n1,...,nN∈I

fγnN (x)

[
N−1∏
l=1

(
1− Fγnl

(
xγ̄nl
γ̄nN

))][ L∏
l′=N+1

Fγnl′

(
xγ̄nl′
γ̄nN

)]
. (6.18)

For verification purpose, we show two special cases of (6.18) below.

1. For the special case of N = 1, (6.18) simplifies to the PDF of the n-SNR-ranking SMuD

selected user’s a-SNR as

fγ̂(1)
(x) =

L∑
n1=1

fγn1
(x) ·

[
L∏
l′=2

Fγnl′
(xγ̄nl′/γ̄n1)

]
. (6.19)

For i.n.d. Rayleigh-faded users, we have Fγnl′ (xγ̄nl′/γ̄n1)= 1 − e−x/γ̄n1 , and fγn1
(x) =

e−x/γ̄n1

γ̄n1
. Thus, (6.19) is reduced to

fγ̂(1)
(x) =

L∑
l=1

fγl(x) · [Fγ̃(x/γ̄l)]
L−1 =

L∑
l=1

exp(−x/γ̄l)
γ̄l

[1− exp(−x/γ̄l)]L−1. (6.20)

which is the identical to that given in [81] and [80, eq. (39)], as expected.

2. When all the L users have i.i.d. channels, (6.18) reduces to

fγ̂(N)
(x) = N

(
L

N

)
fγnN (x) [1− Fγ(x)]N−1 [Fγ(x)]L−N . (6.21)

which is identical to the case of a-SNR based ranking.
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We note that i.i.d is a prerequisite that (6.18) can be reduced to (6.21). When all the users

follow different fading channel parameters (such as Nakagami-m, -q parameters and Rice-K

factors), even when their average SNRs are identical, i.e., γ̄1 = . . . = γ̄L, (6.18) cannot be

reduced to (6.21), which means that the users’ statistics are not exchangeable. We will show

in Section 6.4.2 and Section 6.5 that if this is the case, fair AAP for all users are not possible

even under n-SNR-ranking.

6.4.2 Throughput and Fairness

The channel throughput of the user with the Nth largest n-SNR is given by

C(N) =
∫ ∞

0
log2(1 + xPT /Nc)fγ̂(N)

(x)dx (6.22)

where fγ̂(N)
(x) is given by (6.18). When all the L users experience Rayleigh fading channels,

we derive a closed-form throughput formula as

C(N),Ray =
∫ ∞

0
log2(1 + xPT /Nc)

∑
n1,...,nN∈I

exp(−x/γ̄nN )
γ̄nN

· exp(−(N − 1)x) ·
(
1− e−x

)L−N
dx

=
∑

n1,...,nN∈I

1
γ̄nN

L−N∑
k=0

(
L−N
k

)
(−1)keBE1(B)/B log2 e (6.23)

where B = ( 1
γ̄nN

+ N + k − 1)Nc/PT . For general fading cases a numerical integration is

required to evaluate C(N).

Using the n-SNR based ranking, the AAP for user with original index k is given by AAPk =

Pr{γ̃k > γ̃(Nc),k̃
}, where γ̃k = γk/γ̄k, and γ̃(Nc),k̃

is theNcth largest n-SNR among the remaining

L− 1 users (excluding user k). Using similar approach in Appendix 6.A, we have

AAPk =
∫ ∞

0
fγ̃k(x)

[∫ x

0
fγ(Nc),k̃

(y)dy
]
dx (6.24)

where

fγ̃(Nc),k̃
(x) =

∑
n1,...,nNc∈Ik̃

fγ̃nNc
(x)×

[
Nc−1∏
l=1

(1− Fγ̃nl (x))

] L−1∏
l′=Nc+1

Fγ̃nl′
(x)

 (6.25)

Here, fγ̃nl (x) and Fγ̃nl (x) are PDF and CDF of the n-SNR γ̃nl of the nlth unranked user and

can be obtained by a change of variable operation on their corresponding a-SNR PDF and

CDF.
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When all the users experience the identical Rice K factors, or m, q parameters over Rician

or Nakagami fading channels (though with different mean SNRs γ̄nl), the CDF Fγ̃l(x) is inde-

pendent of user index l, and we have fγ̃(Nc),k̃
(x) = Nc

(
L−1
Nc

)
fγ̃(x)(1−Fγ̃(x))Nc−1 [Fγ̃(x)]L−Nc−1.

Using (6.24), the throughput of user k with n-SNR-GSMuD (L,Nc) is given by

Ck =
∫ ∞

0
log2(1 + γ̄kPT /Ncx)fγ̃k(x)

[∫ x

0
fγ(Nc),k̃

(y)dy
]
dx (6.26)

For the i.n.d. Rayleigh-faded users, we derive a closed-form expression for AAPk as

AAPk =
∫ ∞

0
e−x

∫ x

0
Nc

(
L− 1
Nc

)
e−y(e−y(Nc−1))

[
1− e−y

]L−Nc−1
dydx

= Nc

(
L− 1
Nc

) L−Nc−1∑
k=0

(
L−Nc − 1

k

)
(−1)k

Nc + k + 1
= Nc/L (6.27)

This result shows that for i.n.d Rayleigh fading channels with n-SNR ranking all the users have

the same channel access probabilities, which increases with Nc. We note that when Nc = 1,

(6.27) reduces to AAPk = 1/L, which is identical to that given by [80, eq. (37)] for the SMuD

case.

6.4.3 LCR and AFD

Let we define α̃k =
√
γ̃k, where γ̃k is the n-SNR of the kth unranked users. Define ˙̃αk

as the first-order time derivation of α̃k. By the change of variables using (6.8), we show that

˙̃αk for Rayleigh, Rician and Nakagami-m fading channels also follows a zero-mean Gaussian

distribution and its PDF is given by

f ˙̃αk
( ˙̃α) =

1√
2πσ̇ ˙̃αk

exp

(
−

˙̃α2

2σ̇2
˙̃αk

)
, (6.28)

where σ̇2
˙̃αk

is the variance of ˙̃αk given by σ̇2
˙̃αk

= π2f2
Dop,k, σ̇

2
˙̃αk

= π2f2
Dop,k/(1 + Kk), and

σ̇2
˙̃αk

= π2f2
Dop,k/mk for the Rayleigh, Rician and Nakagami-m fading channels, respectively,

and fDop,k is the Doppler fading bandwidth of the kth user. Below, we use ˙̃σ2
k as a shorthand

for σ̇2
˙̃αk

.

Now we derive the LCR and AFD of the Nth largest normalized amplitude, α̃(N) =
√
γ̃(N).

The LCR of α̃(N) at the signal level R is given by

LCRα̃(N)
(R) =

∫ ∞
0

ẋfα̃(N), ˙̃α(N)
(R, ẋ)dẋ (6.29)
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where fα̃(N), ˙̃α(N)
(x, ẋ) is the joint PDF of α̃(N) and ˙̃α(N).

Using a similar procedure in Section 6.3.2, we derived a closed-form expression of (6.29)

for i.n.d. faded users as

LCRα̃(N)
(R) =

∑
n1,...,nN∈I

fα̃nN (R)

[
N−1∏
l=1

(1− Fα̃nl (R))

][
L∏

l′=N+1

Fα̃nl′
(R)

]∫ ∞
0

ẋf ˙̃αnN
(ẋ)dẋ

=
∑

n1,...,nN∈I
fα̃nN (R)

[
N−1∏
l=1

(1− Fα̃nl (R))

][
L∏

l′=N+1

Fα̃nl′
(R)

]
˙̃σnN /

√
2π, (6.30)

where ˙̃σnN = σ̇nN /
√
γ̄nN .

The AFD is given by Tα̃(N)
(R) = Pr{α̃(N) < R}/LCRα̃(N)

. For i.n.d. Rayleigh faded users,

we derived a closed-form expression for Pr{α̃(N) < R} as

Pr{α̃(N) < R} = N

(
L

N

) L−N∑
k=0

(−1)k
(
L−N
k

)
[1− exp(−R2(N + k))]/(N + k)

6.4.4 Channel Access Statistics

The AAR, AAT and AWT of GSMuD (L,Nc) with n-SNR ranking are derived here. Let

we define α̃∗ = α̃(Nc),k̃
=
√
γ̃(Nc),k̃

, where γ̃(Nc),k̃
is the Ncth largest n-SNR among L− 1 users

(excluding user k). Define ˙̃α∗ as the first-order time derivation of α̃∗.

Define r̃k = α̃k/α̃(Nc),k̃
= α̃k/α̃∗. The AAR of the kth user , AARk, is equivalent to

the LCR at the positive direction of the kth users’ signal envelop at the level that r̃k = 1.

AARk = Pr{r̃ = 1, ˙̃rk > 0) Following a procedure given in [80], the AAR of user k is given by

AARk =
∫ ∞

0

˙̃rfr̃k, ˙̃rk(r̃ = 1, ˙̃r)d ˙̃r, (6.31)

where ˙̃rk is the first-order time derivation of r̃k, and fr̃k, ˙̃rk(r̃, ˙̃r) is the joint PDF of r̃k and ˙̃rk.

Using the procedure similar to that for deriving the case of a-SNR ranking in Section 6.3.3

and Appendix 6.C, we obtain a single integral expression of AARk with n-SNR ranking as

AARk =
∫ ∞

0
fα̃k(α̃∗)

∑
n1,...,nNc∈Ik̃

fα̃nNc
(α̃∗)

[
Nc−1∏
l=1

(1− Fα̃nl (α̃∗))

]

×

 L−1∏
l′=Nc+1

Fα̃nl′
(α̃∗)


√

( ˙̃σ2
k + ˙̃σ2

nNc
)

2π
dα̃∗ (6.32)
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For Rayleigh fading channels, fα̃k(x) = 2x exp(−x2) and Fα̃k(x) = 1− exp(−x2). Assume

the general case that all the users may have different Doppler shifts. From (6.32) we obtain a

closed-form AAR expression as

AARk =
∑

n1,...,nNc∈Ik̃

L−1−Nc∑
l=0

(−1)l
(
L− 1−Nc

l

)
(Nc + 1 + l)−3/2π

√
(f2

Dop,k + f2
Dop,nNc

)/2 (6.33)

Furthermore, if fDop,1 = · · · = fDop,L = fDop, we have

AARk = πfDopNc

(
L− 1
Nc

) L−1−Nc∑
l=0

(−1)l
(
L− 1−Nc

l

)
(Nc + 1 + l)−3/2 (6.34)

Finally, we have AATk = AAPk/AARk, and AWTk = (1−AAPk)/AARk.

6.5 Numerical Results

We provide some numerical examples and simulation results to illustrate the performance

of our proposed GSMuD scheme with both a-SNR- and n-SNR-based rankings for i.i.d. and

i.n.d. users over Rayleigh and Nakagami-m fading channels. For i.i.d. channels we assume

all the users’s signals have the same average SNRs, and m = 2.1 in the Nakagami-m fading

channel. For all the i.n.d. channels considered in this section, we assume the average SNRs

differ successively by 1.5 dB from the strongest user to the weakest one, i.e., γ̄k+1 = γ̄k10−1.5/10,

for k = 1, . . . , L− 1. Furthermore, following the same branch order m = [3, 2.6, 2.2, 1.8, 1.4, 1]

in the i.n.d. Nakagami channels.

Next we present the numerical and simulation results for the throughput and fairness

metrics of the propose n-SNR-ranking GSMuD and the a-SNR-ranking GSMuD proposed in

Chapter 4. We used the Nakagami-m fading channel simulator proposed in Chapter 7.2 to

generate the desired channel coefficients in our simulation.

6.5.1 Throughput

We assume PT = 1 for different Nc and L in Fig. 6.2 and Fig. 6.3. Thus, PN = 1/Nc.

All throughput results have been normalized by B/Ns. In Fig. 6.2 we present the individual

throughput of GSMuD (with the a-SNR-based and the n-SNR-based rankings) vs. the user-

average channel SNR γ̄ (γ̄ = 1
L

∑L
k=1 γ̄k) over i.n.d. Rayleigh fading channels, with L = 6,
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Figure 6.2 Analytical and simulated individual throughput of ranked users
with GSMuD (with a-SNR- and n-SNR-based rankings) vs. the
user-average channel SNR over i.n.d. Rayleigh fading channels.
The channel average SNRs for the L = 6 users differ by 1.5 dB
from the strongest user to the weakest one.

Nc = 4 and N = {1, 2, 3, 4} (the first 4 strongest users). With the n-SNR ranking the

throughput gap between the strongest user (N = 1) and the 4th strongest user (N = 4) is

reduced compared to that with the a-SNR ranking, which implies an improved fairness. On

the other hand, the throughput of the n-SNR ranking for N = 1 is smaller than that with the

a-SNR ranking.

In Fig. 6.3 we show the sum-throughput of GSMuD vs. the channel average SNR over

i.n.d. Nakagami-m fading channels with L = 6. The results show that the sum-throughput

for each Nc with the n-SNR ranking is slightly lower than that of the a-SNR ranking. As Nc

increases the sum throughput increases. For Nc = L, the rates of the a-SNR-GSMuD and the

n-SNR-GSMuD become identical, as expected. In both Fig. 6.2 and Fig. 6.3, the analytical

curves for both the a-SNR- and the n-SNR-ranking excellently match the simulation results

(in markers), which verified the validity and accuracy of our analysis.

In Fig. 6.4, the sum rates of the n-SNR GSMuD and the round robin schemes are given
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Figure 6.3 Analytical and simulated sum throughput of GSMuD vs. the
channel average SNR over i.n.d. Nakagami-m fading chan-
nels (with L = 6), with both a-SNR-based (in solid lines) and
n-SNR-based (in dashed lines) rankings. For the i.n.d. chan-
nels, the average SNRs differ by 1.5 dB from the strongest user
to the weakest one, and m = [3, 2.6, 2.2, 1.8, 1.4, 1].

assuming L = 6 i.i.d. Rayleigh faded users and Nc = [1, 2, 3]. The n-SNR GSMuD, while

maintaining fairness, has a larger throughput than the RR scheme due to the SNR ranking.

In Fig. 6.5, individual user throughput of GSMuD with a-SNR and n-SNR-based rankings vs.

original user index k over i.n.d. Rayleigh fading channels is shown. As Nc increases, every

user has a larger rate. The n-SNR ranking brings more uniform throughput rates for different

users and thus better fairness than a-SNR ranking.

6.5.2 Fairness Metrics

We study the fairness metrics (including the AAP and DoF). For all the examples studied

below, we assume PN = 1 for all the Nc selected users, so that PT = Nc. We show the AAP

of every unordered user k (k = 1, . . . , L) with the n-SNR-GSMuD and the a-SNR-GSMuD

schemes in the i.n.d. Rayleigh and i.n.d. Nakagami-m fading channels in Fig. 6.6 and Fig.

6.7, respectively. In both figures the user index k is shown in a descending order of their
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Figure 6.4 Sum throughput vs. the channel average SNR for both
n-SNR-GSMuD and round robin schemes over i.i.d. Rayleigh
fading channels with L = 6.

average SNRs. For both Fig. 6.6 and Fig. 6.7, the analytical curves again excellently agree

with the simulation results (in markers).

The result in Fig. 6.6 shows that as Nc increases the AAP increases for every user k. The

n-SNR ranking ensures an uniform AAP (AAPk = Nc/L) for every k and Nc and thus provides

perfect proportional fairness.

Fig. 6.7 shows that for the i.n.d. Nakagami fading channels n-SNR-ranking significantly

improves the fairness, though it does not provide perfectly uniform AAPs. Though the dis-

parateness of the average SNRs has been compensated by the n-SNR ranking, the differences

of Nakagami-m parameters among the users cause the slightly non-uniform AAPs. This is due

to the difference of other types of channels (such as the Nakagami and Rician distributions)

than the Rayleigh channels. The non-uniform fading parameters (such as Nakagami-m, q and

Rice-K parameters) among the users may not be perfectly compensated by the SNR normal-

ization alone but the n-SNR ranking can improve it. We also observe in Fig. 6.7 that for

Nc = 1 the user k = 6 (with m = 1) has the largest AAP among the six users. This is because
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Figure 6.5 Individual user throughput of GSMuD with a-SNR and
n-SNR-based rankings vs. original user index k over i.n.d.
Rayleigh fading channels with L = 6.

that in the Nc = 1 case, the PDF of the Nakagami channel envelop with a smaller m-parameter

has a larger tail towards infinity than the PDF with a larger m-parameter (given the same

average SNR, see Fig. 7.2), and so the former (user 6) has an advantage of competing for the

best-ranked user. When Nc increases, a small m-parameter is not advantageous to compete

for the second and third largest SNRs, since it also has a bulky tail toward the low SNR region

as compared to the case with a larger m-parameter. Thus, we observe that as Nc increases,

users with larger m parameters have larger AAPs.

Fig. 6.8 shows the sum DoF vs. Nc for i.n.d. Rayleigh and Nakagami channels. The

result shows that the sum DoF of a-SNR ranking over i.n.d. Nakagami channel is highly unfair

for Nc = 1, but improves as Nc increases. On the other hand, the n-SNR ranking brings

near-perfect fairness for all cases.
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Figure 6.6 Analytical and simulated AAPs of GSMuD with a-SNR and
n-SNR-based rankings vs. original user index k over i.n.d.
Rayleigh fading channels with L = 6. The user index is ranged
in the decreasing order of the channel average SNRs.

Figure 6.7 Analytical and simulated AAPs of GSMuD with a-SNR and
n-SNR-based rankings vs. user index k over i.n.d. Nakagami
fading channels with L = 6, and m = [3, 2.6, 2.2, 1.8, 1.4, 1].
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Figure 6.8 Sum DoF of GSMuD vs. Nc over i.n.d. Rayleigh and
Nakagami-m fading channels, with L = 6 and Nc = [1− 5].

6.5.3 LCR, AFD, and Channel Access Statistics

Below, we assume all the users have the same Doppler bandwidth, i.e., fDop,1 = . . . =

fDop,L = fDop. As a result, the normalized LCR and normalized AFD are independent of

fDop. The normalized LCR LCRα(N)
(R)/fDop and the normalized AFD Tα(N)

(R) · fDop (with

N = [1, 3, 5] and Nc = L = 6) of a-SNR-GSMuD vs. threshold R over the i.n.d. Nakagami-m

fading channels are presented in Fig. 6.9 and Fig. 6.10, respectively. Fig. 6.9 shows that as N

increases (towards lower-ranked users), the LCR happens more frequently at the lower values

of R. Fig. 6.10 illustrates that at a lower threshold level R a weaker user (e.g., N = 3) has a

larger AFD than a stronger user (e.g., N = 1) does.

The AAR, AAT and AWT of GSMuD are important performance metrics to the scheduling

and cross-layer design. The normalized AAR (AARk/fDop) vs. user index k over the i.n.d.

Nakagami channels is shown in Fig. 6.11, with L = 6 and Nc = 3. With a-SNR ranking the

strongest user (k = 1) and the weakest user (k = 6) have lower AARs than the users with

medium average SNRs (k = 3, 4). For n-SNR ranking, however, user 1 is the most active and

user 6 is the least active in acquiring and releasing the channel access.
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Figure 6.9 Normalized LCR (LCRα(N)
(R)/fDop) of GSMuD vs. thresh-

old R over i.n.d. Nakagami-m fading channels, with
L = 6, N = [1, 3, 5], and m = [3, 2.6, 2.2, 1.8, 1.4, 1].
fDop,1 = . . . = fDop,L = fDop.

The normalized AAT (AATk · fDop) vs. user index k over the i.n.d. Rayleigh channel is

shown in Fig. 6.12, with L = 6 and Nc = [1 − 5]. In Fig. 6.12 the simulation results are

shown which verify our analytical results on the AAT (and also the AAR and the AWT, since

the AAP has already been verified). The result in Fig. 6.12 shows that the users with larger

average SNRs generally have larger AATs than users with weaker average SNRs for a-SNR

ranking. With the n-SNR ranking, the AATs of weaker users are significantly improved than

with the a-SNR ranking.

The normalized AWT (AWTk · fDop) for each user over the i.n.d. Nakagami channels is

presented in Fig. 6.13, which shows that the AWTs for all the users decrease as Nc increases,

which is an advantage of GSMuD over the SMuD. With the n-SNR ranking the AWTs among

the users become nearly uniform.
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Figure 6.10 Normalized AFD (Tα(N)
(R) · fDop) of GSMuD vs. thresh-

old R over i.n.d. Nakagami-m fading channels with
L = 6, N = [1, 3, 5], and m = [3, 2.6, 2.2, 1.8, 1.4, 1].
fDop,1 = . . . = fDop,L = fDop.

6.6 Summary

To address the fairness issues in GSMuD, we have proposed the normalized-SNR-ranking

based approach, which ranks a total of L users awaiting for transmission by their SNRs and

selects Nc number of users with the largest absolute or normalized SNRs for channel access. We

also analyzed the fairness metrics and throughput performance of the absolute- or normalized-

SNR-ranking based GSMuD schemes assuming the equal transmit power allocation among

the selected users. The individual- and sum-rates, second-order statistics (LCR and AFD),

fairness (DoF and AAP), and channel access statistics (including AAR, AAT and AWT) have

been evaluated. The results are valid for generalized fading channels, and have been verified

by simulations. Numerical results show that a-SNR-based GSMuD significantly improves the

proportional fairness of all the users than the SMuD and the n-SNR-based GSMuD further

extends this benefit. Specifically, as Nc increases, the GSMuD improves the AAT and reduces

the AWT for every user than the SMuD. With the n-SNR ranking, the users with weaker aver-
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Figure 6.11 Normalized AAR (AARk/fDop) of GSMuD with a-SNR- and
n-SNR-based rankings vs. user index k over i.i.d. and i.n.d.
Nakagami-m fading channels, with L = 6 and Nc = 3. For the
i.n.d. channels, m = [3, 2.6, 2.2, 1.8, 1.4, 1] and the user index
is ranged in the decreasing order of the channel average SNRs.
For the i.i.d. channels, m = 2.1 and the channel average SNRs
are identical for all the users.

age SNRs gain more resources in terms of the AAP and the AAT, and thus better proportional

fairness. These results will be useful for the cross-layer design of multiuser parallel schedul-

ing systems. We further show that a-SNR-based GSMuD can provide a larger sum-rate than

n-SNR-based GSMuD for all cases, and thus these two schemes provide a tradeoff between

fairness and performance.

This concludes our discussion on GSMuD-related algorithms and analysis. In the next chap-

ter, we address another important problem for researchers and engineers alike: the Nakagami-m

fading channel simulator. As a matter of fact, many of the simulation results from previous

chapters actively applied the approaches we present next to generating the Nakagami-m fading

channels.
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Figure 6.12 Analytical and simulated normalized AAT (AATk · fDop) of
GSMuD with a-SNR- and n-SNR-based rankings vs. user
index k over i.n.d. Rayleigh fading channels. L = 6 and
Nc = [1− 5].

6.7 Appendix 6.A AAP Expressions for a-SNR GSMuD

Define fγ(Nc),k̃
(x) as the PDF of γ(Nc),k̃

. Using a similar procedure similar to that for

deriving fγ(N)
(x), we may obtain

fγ(Nc),k̃
(x) =

∑
n1,...,nNc∈Ik̃

fγnNc
(x)×

[
Nc−1∏
l=1

(1− Fγnl (x))

] L−1∏
l′=Nc+1

Fγnl′
(x)

 , (6.35)

where in
∑

n1,...,nNc∈Ik̃
, Ik̃ is the set for all combinations of {n1, . . . , nL−1} (excluding the case

of nl = k), in which the subset {n1, . . . , nNc} are the indices of Nc users with largest SNRs

among L− 1 users. We have

AAPk =
∫ ∞

0
fγk(x)

[∫ x

0
fγ(Nc),k̃

(y)dy
]
dx (6.36)
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Figure 6.13 Normalized AWT (AWTk · fDop) of GSMuD with a-SNR-
and n-SNR-based rankings vs. user index k over i.n.d.
Nakagami-m fading channels. L = 6 and Nc = [1− 5].

For the Rayleigh-faded users, we derive a closed-form expression for AAPk as

AAPk =
∫ ∞

0

e−x/γ̄k

γ̄k

∫ x

0

∑
n1,...,nNc∈Ik̃

exp(−y/γ̄nNc )
γ̄nNc

[
Nc−1∏
l=1

e−y/γ̄nl

]
L−1∏

l′=Nc+1

[
1− e−y/γ̄n′l

]
dydx

=
∫ ∞

0
exp(−x/γ̄k)/γ̄k

∑
n1,...,nNc∈Ik̃

∑
τ∈JL−Nc−1

sign(τ)
(1− e−Bx)
γ̄nNcB

dx

=
∑

n1,...,nNc∈Ik̃

∑
τ∈JL−Nc−1

sign(τ) · 1
γ̄nNc

[γ̄k/(Bγ̄k + 1)] (6.37)

where B =
∑Nc

l=1
1
γ̄nl

+ |τ |, and JL−Nc−1 is a shorthand for JL−Nc−1

({
1
γ̄nl

}L−1

l=Nc+1
, nl 6= k

)
,

which follows the definition in (5.27) and contains 2L−Nc−1 elements.

6.8 Appendix 6.B Joint PDF of α and α̇ for GSMuD

We derive the joint PDF of α(N) and α̇(N) here. The joint CDF of α(N) and α̇(N) is given

by

Fα(N),α̇(N)
(x, ẋ) =

∑
n1,...,nN∈I

Pr{αnN < x, α̇nN < ẋ|αnN = α(N)} · Pr{αnN = α(N)} (6.38)
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where {αnN = α(N)} is the event that the user nN (nN = 1, . . . , L) has the Nth largest

SNR. The summation set I is the set for all combinations of {n1, . . . , nL} in which the subset

{n1, . . . , nN} are the indices of N users with largest SNRs. We first consider the case that αnN

and α̇nN are independent, and then study the case that they are correlated.

When αnN and α̇nN are independent, we have

Fα(N),α̇(N)
(x, ẋ) =

∑
n1,...,nN∈I

Pr{αnN < x|αnN = α(N)} · Pr{α̇nN < ẋ} (6.39)

where Pr{αnN < x|αnN = α(N)}=
∫ x

0 fαnN (y|αnN = α(N))dy, and Pr{α̇nN < ẋ} =
∫ ẋ

0 fα̇nN (y)dy.

Using a procedure similar to that for deriving (5.5) we obtain

fαnN (y|αnN = α(N)) = fαnN (y)

[
N−1∏
l=1

(1− Fαnl (y))

][
L∏

l′=N+1

Fαnl′
(y)

]
. (6.40)

Taking double derivative of (6.39) w.r.t to x and ẋ leads to

fα(N),α̇(N)
(x, ẋ) =

∑
n1,...,nN∈I

fαnN (x)

[
N−1∏
l=1

(1− Fαnl (x))

][
L∏

l′=N+1

Fαnl′
(x)

]
fα̇nN (ẋ) (6.41)

Next, when αnN and α̇nN are not independent, we have

Fα(N),α̇(N)
(x, ẋ) =

∑
n1,...,nN∈I

Pr{αnN < x, α̇nN < ẋ|αnN = α(N)} (6.42)

Taking double derivative of (6.42) w.r.t to x and ẋ leads to

fα(N),α̇(N)
(x, ẋ) =

∑
n1,...,nN∈I

fαnN ,α̇nN (x, ẋ)

[
N−1∏
l=1

(1− Fαnl (x))

][
L∏

l′=N+1

Fαnl′
(x)

]
(6.43)

6.9 Appendix 6.C AAR for a-SNR GSMuD

We first evaluate the integral with respect to (w.r.t.) α̇∗ and obtain (setting r = 1)∫ ∞
−∞

fα̇k(ṙα∗ + α̇∗)fα̇nNc (α̇∗)dα̇∗ =
1

2πσ̇kσ̇nNc

∫ ∞
−∞

exp

(
−(ṙα∗ + α̇∗)2

2σ̇2
k

− α̇2
∗

2σ̇2
nNc

)
dα̇∗

=
1√

2π(σ̇2
k + σ̇2

nNc
)

exp

(
− ṙ2α2

∗
2σ̇2

k + 2σ̇2
nNc

)
(6.44)

Next, we interchange the integral order of α∗ and ṙ. The integral w.r.t. ṙ gives

1√
2π(σ̇2

k + σ̇2
nNc

)

∫ ∞
0

ṙ exp

(
− ṙ2α2

∗
2σ̇2

k + 2σ̇2
nNc

)
dṙ =

1
α2
∗

√
(σ̇2
k + σ̇2

nNc
)/(2π) (6.45)
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Substituting (6.45) into (6.13) we obtain a single integral expression of AARk valid for

i.n.d.-faded users over Rayleigh, Rician and Nakagami-m channels as

AARk =
∫ ∞

0
fαk(α∗)

∑
n1,...,nNc∈Ik̃

fαnNc
(α∗)

[
Nc−1∏
l=1

(1− Fαnl (α∗))

]

×

 L−1∏
l′=Nc+1

Fαnl′
(α∗)

√(σ̇2
k + σ̇2

nNc
)

2π
dα∗ (6.46)

Furthermore, for i.n.d. Rayleigh-faded users, (6.46) can be reduced to a closed form. For

Rayleigh fading channels fαk(x) = 2x
γ̄k

exp(−x2/γ̄k) and Fαk(x) = 1 − exp(−x2/γ̄k). The

product
∏L−1
l′=Nc+1 Fαnl′

(α∗) in (6.46) may be decomposed to

L−1∏
l′=Nc+1

Fαnl′
(α∗) =

∑
τ∈JL−Nc−1

sign(τ) exp(−α2
∗|τ |)

where JL−Nc−1 is a shorthand for JL−Nc−1({ 1
γ̄nl
}L−1
l=Nc+1, nl 6= k). Using the integral equality

that
∫∞

0 x2 exp(−x2C)dx =
√
πC−3/2/4, we have

AARk =
∑

n1,...,nNc∈Ik̃

∑
τ∈JL−Nc−1

sign(τ)

√
(σ̇2
k + σ̇2

nNc
)/2

γ̄kγ̄nNc

(
1
γ̄k

+
Nc∑
l=1

1
γ̄nl

+ |τ |

)−3/2

(6.47)

As the verification, for Nc = 1, the result in (6.47) reduces to

AARk =
L∑

n1=1
n1 6=k

∑
τ∈JL−2

sign(τ)

√
(σ̇2
k + σ̇2

n1
)/2

γ̄kγ̄n1

(
1
γ̄k

+
1
γ̄n1

+ |τ |
)−3/2

(6.48)

where JL−2 is a shorthand for JL−2({ 1
γ̄nl
}Ll=2, nl 6= k). We can readily show that (6.48) is

equivalent to the case of SMuD given by [80, eq.(11)].
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CHAPTER 7. ACCURATE COMPLEX NAKAGAMI-m FADING

CHANNEL SIMULATOR

7.1 Introduction

The Nakagami-m [123] channel model has been widely used to model the fading distribu-

tion in various wireless channels [98–102, 104, 105]. Its popularity stems from the fact that

Nakagami-m fading model can better fit the experimental results [106] than Rayleigh, Rice

or log-normal fading models for certain types of fading environment. Simulation of Nakagami

channel sequences which accurately captures the pre-specified temporal auto-correlation prop-

erty is important for fading channel transceiver design and performance evaluation for wireless

communication, including, for example, simulation of pilot-symbol-based channel estimators.

and cross-layer design in packet transmissions [76] for Nakagami channels.

For Nakagami-m fading channel simulation, in [95] a method for generating Nakagami-m

distributed samples valid for integer and half-integer valued m-parameters was proposed. This

method relies on the fact that the square-root of a sum of the square of n zero-mean indepen-

dent and i.i.d. real Gaussian variables has a Nakagami-m distribution with m = n/2. This

technique can generate samples which follow the pre-specified multi-branch spatial correlation

matrix, but it is not clear how to use this method to fulfill pre-specified temporal correlation

function. In [110], a method was proposed to generate Nakagami-m fading channels based

on the product of a square-root beta process and a complex Gaussian process. This result

can account for temporally-correlated channels but is only valid for the case 0.5 ≤ m ≤ 1.

The recently proposed Nakagami-m fading channel simulator [111] discussed in Section 1.5

takes into account arbitrary temporal correlation. In this approach [111], a Rayleigh fading

channel realization with a pre-specified temporal correlation (such as the Clarke’s model) is
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first generated. The Rayleigh fading amplitude is then mapped to the Nakagami-m fading

amplitude via the relationship between CDFs of Rayleigh and Nakagami distributions. Fur-

thermore, the authors heuristically designed a process so that the phase components of the

generated Nakagami-m fading channels were taken directly from those of the Rayleigh channel

samples. As pointed out in Section 1.6, this technique provides a low-complexity solution to

generate Nakagami samples, but with two technical problems left open: (1) It is not known

what the generated Nakagami temporal autocorrelation function is. An even more significant

question is, in order to fulfill a specified Nakagami temporal autocorrelation function, what

should the original Rayleigh temporal autocorrelation function be? (2) The phase property of

the generated Nakagami sequences have not been adequately addressed.

In this chapter, we design simulation techniques to solve these two open problems and

also provide an in-depth analysis. We propose a novel approach to generate the Nakagami-m

fading channel sequences which satisfies (1) arbitrary pre-specified temporal autocorrelation

function, (2) proper non-uniform phase distribution following that given in [112], (3) arbitrary

pre-specified m parameter and signal power, (4) independent real and imaginary parts (for

m ≥ 1). Our new method has a low complexity, versatile for different channel parameters, and

theoretically more strict than available approaches.

7.2 Nakagami-m Fading Channel Model

The PDF of a Nakagami-m distributed fading channel amplitude α is given by

p(α) =
2mmα2m−1

ΩmΓ(m)
exp(−mα

2

Ω
) (7.1)

We noticed this PDF expression is a central chi-square distribution in essence. Here Ω = E[α2]

is the average power of α and called the shaping factor, and

m =
Ω2

E[α2 − Ω]
≥ 1

2
(7.2)

is the m-parameter which determines the severity of fading. The amount of fading (AF) [103]

for the Nakagami-m distributed RV is:

AF =
1
m

(7.3)
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where AF for any RV α is defined as:

AF =
var(α2)

Ω2
(7.4)

AF quantifies the fading severity, with a larger value meaning more severe fading. We can see

that Nakagami-m distribution has the widest range of AF from 0 to 2 among all the commonly

used multipath distributions such as Rayleigh, Rice,Nakagami-q, etc. The one sided Gaussian

(m = 1
2) and Rayleigh (m = 1) are special cases of Nakagami-m distribution. The m factor

also determines the severity of fading evident from the AF. When m < 1, AF > 1 is the

situation where fading is more sever than Rayleigh fading and the smaller the m parameter,

the larger the AF thus the more severity the fading. On the other hand, when m > 1, AF < 1

is the situation where fading is less sever than Rayleigh fading and the larger the m parameter

the less severity the fading is. In the extreme case where m → +∞, the Nakagami-m fading

channel converges to a nonfading AWGN channel.

The relationship is also evident in the shape of the Nakagami-m PDF with the value of the

m parameter. In Fig.7.1, RVs with smaller m value tends to have longer tails and concentrate

more in low SNR region while larger m tends to drag the PDF toward higher SNR region with

smaller tails. When m is really large (in this case, m = 100), the most majority of mass of

PDF centers around 1 in α-axis with the extreme of becoming an impulse function at α = 1.

In this extreme case, the Nakagami-m fading channel is no longer a fading channel because

the AF = 0 and it becomes the AWGN channel.

Although several experimental and theoretical works have shown that the Nakagami-m

distribution is the best-fit distribution for the amplitude by data obtained from many urban

multipath wireless channels [123], [113], [114], there’s no empirical data available discussing

the distribution for the phase of the channel. Actually this ambiguity on the phase distribution

is the base of some criticism on the Nakagami-m fading model [115]. Some previous works on

Nakagami-m fading channel simulation either ignore the phase problem [117], or try to assign

a uniform distribution on the phase [110] [111]. Using the fact that Nakagami-m distribution

is Rayleigh distribution when m = 1 and approximates that of Hoyt [119] (m < 1) and Rice

(m > 1), a reasonable assumption is that the phase distribution would also closely approximate
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Figure 7.1 Nakagami-m PDF with different m parameter

that of the corresponding distributions. A phase-amplitude joint distribution is obtained in

[112] by using the fact that the Nakagami-m distribution reduces to a Rayleigh distribution

and its uniform phase distribution. The obtained marginal phase distribution, given in (7.5),

closely matches that of the Rayleigh (m = 1), Hoyt (m < 1) and Rice (m > 1) case. We

observed that this model is more reasonable than assuming a uniform phase distribution for

any m parameters and simulation results in Section 7.5 obtained by the proposed simulator

will confirm this claim.

Another characteristic of fading channels is that the channel coefficients are temporally

correlated [118]. One question is what would be the fading spectrum model that fits the

physical channel best. However, in spite of its importance in practice (i.e. the performance of

PSAM would be different under different models) there’s been no empirical data nor explicit

theoretical analysis on this matter presented in the literature. The authors in [111] argued

for the legitimacy of accepting the auto-correlation property of the output sequence of their

proposed amplitude mapper but no justification was given in the paper as whether the auto-
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correlation property of the output indeed approximate that of the physical phenomenon. The

simulator proposed there has no component taking care of the auto-correlation property of the

output sequence but rather blindly accept any sequence with any auto-correlation property

that might come out from the proposed amplitude mapper. We observe that indeed before

any specific physical models or empirical data are available in the literature, it’s difficult to

argue which auto-correlation property of the output sequence from the Nakagami-m simulator

is best fit for the real physical phenomenon. We thus take a more adaptive approach on the

auto-correlation property in that we design a part in our proposed simulator that make sure

the output sequence follow any arbitrary auto-correlation model of choice. The inclusion of

this part in the proposed simulator would greatly improve the adaptability in that: (1) it can

be quickly adapted to any auto-correlation model if such model is found using new empirical

data and (2) in most analytical analysis in the published work, a certain auto-correlation

model is assumed (usually Jakes’ fading channel power spectrum density model), our proposed

simulator will provide the output based on the model used in analytical analysis to test the

accuracy of the analysis itself, which is not possible using the simulator proposed in [111].

In Rayleigh fading model, the complex channel coefficients are considered circular sym-

metric, i.e. independent real and imaginary quadrature parts. This assumption of indepen-

dent quadrature parts in Nakagami-m fading model is also valid and indeed adopted as a

basic assumption in most analytical analysis of different system in Nakagami-m fading chan-

nels [98–100,102,104,105].

7.3 Simulator Design

The main design objective for the simulator is to generate complex Nakagami sequences

with pre-specified temporal auto-correlation property and also correct phase property as shown

by [112]

pΘ(θ) =
Γ(m)| sin(2θ)|m−1

2mΓ2(m/2)
(7.5)

This requires the real and imaginary parts of the channel to be independent but not circularly

symmetric. To our knowledge, a simulation technique to fulfill such a requirement is not known
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in the literature.

To solve this problem, we proposed a new simulator structure that guarantees the indepen-

dence of the quadrature components of the generated channel samples as well as pre-specified

temporal autocorrelation characteristic. We design a technique which maps the real and imag-

inary parts of Gaussian sequence separately to Nakagami-m sequences with parameters m/2,

and then sum them up to get a complex Nakagami channel which has independent real and

imaginary parts.

We need to generate a temporally correlated complex Nakagami sequence y(t) with zero-

mean, variance σ2
y , and a pre-specified auto-correlation function Ry(τ) = Rtar(τ), where Rtar(τ)

is the target temporal correlation function. Two mapping methods are designed next.

7.3.1 First Approach

The schematic plot of the proposed first mapping algorithm is shown in Fig. 7.2. The

scheme is described below (Algorithm I).

1. Generate two independent real Gaussian sequences xR(t) and xI(t), both have the iden-

tical temporal auto-correlation function Rx(τ) = E[xR(t)x∗R(t− τ)] = E[xI(t)x∗I(t− τ)].

Furthermore, xR(t) ∼ N(0, 1) and xI(t) ∼ N(0, 1). We can readily show that x(t) =

xR(t) + jxI(t) ∼ CN(0, 2) is a circularly symmetric complex Gaussian sequence.

2. Map xR(t) and xI(t) independently to Nakagami channel samples. The procedure is

outlined below. We note that |xR(t)| and |xI(t)| are both Chi- (χ) random variables

with one degree of freedom (d.o.f.). Denote their CDF as u = Fχ(x) =
∫ x

0 fχ(z)dz.

Map |xR(t)| to a variable uR which has uniform distribution in [0, 1), and then map uR

to |yR(t)| by the inverse CDF of the Nakagami-m amplitude variable (with parameters

σ2
y/m,m/2).

Since the PDF fNaka(z) for Nakagami-m amplitude is known, we can evaluate the CDF by

uR = FNaka(|yR|) =
∫ |yR|

0 fNaka(z)dz. The inverse CDF calculation |yR| = F−1
Naka(uR) can

be implemented using a numerical search, or by using the inverse CDF approximation

proposed in [111] based on the Hasting’s approach.
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3. The generated real part of the Nakagami channel component is given by

yR = |yR|sign(xR) = F−1
Naka(Fχ(xR))sign(xR)

= g(xR) (7.6)

4. Similarly, the same mapping is implemented for xI(t), generating yI(t) = g(xI(t)). In

short, the real and imaginary components of the Nakagami-m channel samples are gen-

erated independently by the proposed procedure. The complex Nakagami-m sequence is

given by y(t) = yR(t)+jyI(t), cf. Fig. 7.2. It is obvious that y(t) is a complex Nakagami

sequence with the pre-specified m-parameter. �

Figure 7.2 Diagram of the proposed complex Nakagami channel simulator
(method 1). Fχ(r) and FNaka(r) refer to the CDFs of the Chi-
(χ) and Nakagami-distributed variables, respectively.

7.3.2 Second Approach

In the first method, |xR| is a χ-variable with 1 d.o.f., and its CDF evaluation may not be

numerically stable for |xR| being close to zero. We design a numerically more stable and also

computationally more efficient approach below. The diagram of the second simulator is shown

in Fig. 7.3.

We note that x2
R(t) and x2

I(t) are both χ2 variables with 1 d.o.f., or the Gamma variables

with m = 1. Consequently, their CDF evaluation is much more stable and accurate than that
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Figure 7.3 Diagram of the proposed complex Nakagami channel simulator
(method 2). Fχ2(r) and FGamma(r) refer to the CDFs of the
Chi-square (χ2) and Gamma variables, respectively.

of xR(t). Furthermore, inverse-mapping the CDF of Gamma variables (to that of uniform

distribution) is also much easier than inverse-mapping Nakagami amplitudes, and has been

included in many available programming tools. For example, in Matlab the CDF of χ2 variables

and inverse CDF of Gamma variables can be evaluated using chi2CDF (or gamcdf) and gaminv

commands, respectively.

The second approach (Algorithm II) is outlined below (index t of xR(t), xI(t), yR(t),

yI(t) is suppressed when no confusion arises).

1. After the sequence xR is generated, we evaluate the CDF of x2
R, denoted by uR =

Fχ2(x2
R) ∈ [0, 1), and

uR =
∫ x2

R

0
fχ2(z)dz

=
∫ x2

R

0

z−1/2 exp(−z/2)√
2π

dz

where fχ2(z) and uR are the PDF and the CDF of x2
R, respectively.

Next, map uR to real Gamma variable AR (which is the square of Nakagami amplitude

yR) with m-parameter m/2. This is achieved by exploiting the inverse Gamma CDF,

AR = F−1
Gamma(uR), where F−1

Gamma(uR) denotes the inverse function of Gamma CDF uR =

FGamma(AR). For example, F−1
Gamma(uR) = AR leads to uR = FGamma(AR). The Gamma
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CDF FGamma(A) is given by

u = FGamma(A) =
1

b2Γ(a)

∫ A

0
za−1 exp(−z

b
)dz

where a = m/2 and b = σ2
y/(2a) = σ2

y/m holds.

2. The real part of generated Nakagami-m sequence is given by

yR =
√
ARsign(xR) = g(xR) (7.7)

where g(x) is the mapping function from xR to yR, and is given by

g(x) =
√
F−1

Gamma(Fχ2(x))sign(x) (7.8)

We can show that yR =


√
AR, ifxR ≥ 0,

−
√
AR, ifxR < 0.

.

3. The same procedure is used to generate sequence yI from input Gaussian sequence xI .

The generated complex Nakagami-m sequence is given by y(t) = yR(t) + jyI(t), cf. Fig.

7.3. �

With the sign function used in (7.6) and (7.8) for the CDF mapping process, the phase

of the generated sequences are symmetric within the ranges (0, π/2), (π/2, π), (π, 3π/2), and

(3π/2, 2π), and fits the result predicted in (7.5).

We note that in [111] the amplitude |x(t)| =
√
x2
R(t) + x2

I(t) is mapped to the Rayleigh

CDF uRay(t), which is then mapped to Nakagami amplitude modulus |yNaka(t)|. The phase of

the resulting sequence is directly taken from the phase of x(t), and ∠x(t) follows a uniform

distribution. The output sequence is given by y(t) = |yNaka(t)| exp(j∠x(t)), where j =
√
−1.

We point out that there are two approximations in the approach designed in [111]:

1. The real and imaginary parts of generated Nakagami sequences are not strictly indepen-

dent.

2. The phase of yNaka(t) also follows a uniform distribution as that of x(t). However, as

pointed out in [112] when m 6= 1, the phase of yNaka(t) is no longer uniformly distributed,

i.e., yNaka(t) is not a circularly symmetric process.
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The sequence generation approach we proposed above has solved these problems. Our CDF

mapping method is different from that in [111]. In [111], the CDF method uses the (0,∞)

to (0,∞) mapping for channel absolute amplitudes. In our method, the mapping function

g(x) includes the phases of real and imaginary parts of x(t), and it uses (−∞,∞) to (−∞,∞)

mapping, and guarantees that the yR and yI are independent. Furthermore, in our method, the

one-to-one mapping between Gaussian processes (xR and xI) and Nakagami-process (yR and

yI) is used, and thus the phase of resulting complex Nakagami sequence is uniquely determined

by both the phases and amplitudes of the original Gaussian sequence. Since the sequence also

has the correct m-parameter, we show later by simulations that the sequence-phase distribution

follows (7.5), as analytically predicted in [112].

7.4 Mapping of Temporal Correlation Functions

To implement our algorithm, there is still a significant problem to be solved, which is, given

the desired output auto-correlation function Rtar(τ) (i.e., Ry(τ) = Rtar(τ) must hold), what

should the Rayleigh channel auto-correlation function Rx(τ) be? To our knowledge, this is a

critical open problem which has not been addressed in the literature. In [95] and [111], the

generated Rayleigh channels follows the Jakes’ model, and then the sequences are mapped to

Nakagami channels using different techniques. These results have not answered these ques-

tions: 1) Given that the Rayleigh channels follow the Jakes’ model, what would be temporal

auto-correlation function of the generated Nakagami-channels? 2) More significantly, given

the specified Nakagami-channel autocorrelation function Ry(τ) = Rtar(τ), how to determine

Rx(τ) so that the resulting Nakagami channel y(t) after CDF mapping follows the specified

autocorrelation function Ry(τ) = Rtar(τ)?

We provide a new technique to solve this open problem using a two-step procedure: (1)

For the channel mapping function yR = g(xR) (and yI = g(xI)), find the auto-correlation

function mapping function gR(·) so that Ry(τ) = gR(Rx(τ)). This answers the first question

given in the above. (2) Based on gR(·), find the inverse function g−1
R (·), such that Rx(τ) =

g−1
R (Ry(τ)) = g−1

R (Rtar(τ)). In short, given a required Ry(τ) = Rtar(τ), the solution of original



www.manaraa.com

135

Gaussian correlation function is given by Rx(τ) = g−1
R (Rtar(τ)).

The first step is presented below. The output correlation RyR(τ) is calculated by (using

real parts)

RyR(τ) = E[yR(t+ τ)yR(t)]

= E[g(xR(t+ τ))g(xR(t))] (7.9)

Below, we use x1 = xR(t+ τ) and x2 = xR(t) as a shorthand. Assume that the sequences are

stationary and ergodic. We may replace the time average in (7.9) with the ensemble average

over xR(t), and obtain

Ry(τ) =
∫ ∞
−∞

∫ ∞
∞

g(x1)g(x2)f(x1, x2)dx1dx2 (7.10)

where f(x1, x2) is the joint PDF of Gaussian variables x1 and x2, and is given by

f(x1, x2) =
1

2π(1− R̃2
x(τ))1/2

exp

(
−x

2
1 + x2

2 − 2R̃x(τ)x1x2

2(1− R̃2
x(τ))

)
(7.11)

where R̃x(τ) = Rx(τ)/Rx(0) is the normalized autocorrelation function of x(t). Based on the

assumption that x1 ∼ N(0, 1) and x2 ∼ N(0, 1), we have Rx(0) = 1 and R̃x(τ) = Rx(τ). For

example, assuming the Jakes’ spectrum for input sequence x(t), we have R̃x(τ) = J0(2πBfτ),

where Bf is the maximum Doppler shift, and J0(x) is the zeroth order Bessel function of the

first kind. Below, we use R̃x(τ) and Rx(τ) interchangeably.

Equation (7.10) can be evaluated efficiently by using a transform technique given in [110].

Define x1 =
√

2s cos(θ), and x2 = R̃x(τ)
√

2s cos(θ) +
√

1− R̃2
x(τ)
√

2s sin(θ). We have

Ry(τ) =
∫ 2π

0

∫ ∞
0

g
(√

2s cos(θ)
)
g(R̃x(τ)

√
2s cos(θ) +

√
1− R̃2

x(τ)
√

2s sin(θ)) exp(−s)dsdθ

(7.12)

which can be evaluated efficiently using Gaussian quadrature and by the change of integrand

(s into tan(α), thus change integration range from infinite into finite). For convenience, we

may re-write (7.12) as Ry(τ) = MR(Rx(τ)).
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In the second step, we need to find the solution of Rx(τ) given a specified Ry(τ) = Rtar(τ).

Following (7.9), we may write

Rx(τ) = Ex[xR(t+ τ)xR(t)]

= Ey[g−1(yR(t+ τ))g−1(yR(t))] (7.13)

where g−1(y) is the inverse function of g(x) and can be easily evaluated. However, the expec-

tation in (7.13) is with respect to the joint PDF of real Nakagami variable yR(t+ τ) and yR(t)

with correlation coefficient Rtar(τ), and such a PDF is known only for special cases and also

very involved to manipulate [123].

To bypass this technical difficulty, we design an iterative search technique to solve (7.13).

Define Ry(τ) = MR(Rx(τ)). We may remodel the solution of (7.13) as

min
Rx(τ)

|Ry(τ)−Rtar(τ)|2, (7.14)

for all τ . We may rewrite the optimization problem in (7.14) as

Rx(τ) = min
R̃x(τ)

|MR(R̃x(τ))−Rtar(τ)|2 (7.15)

Since (7.15) is a quadratic form, the solution to (7.15) exists and is unique. We design a

numerical algorithm to solve (7.13) using the gradient search, as described below.

Define an error cost function L(Rx(τ)) = |MR(Rx(τ)) − Rtar(τ)|2. The partial derivative

of L(Rx(τ)) with respect to (w.r.t.) Rx(τ) is given by

∂L(Rx(τ))
∂Rx(τ)

= 2(MR(Rx(τ))−Rtar(τ))M ′R(Rx(τ))

where M ′R(Rx(τ)) = ∂MR(Rx(τ))
∂Rx(τ) is the partial derivative of MR(Rx(τ)) w.r.t. Rx(τ) and may

be evaluated numerically by

M ′R(Rx(τ)) =
∂MR(Rx(τ))
∂Rx(τ)

(7.16)

= lim
∆Rx(τ)→0

MR(Rx(τ))−MR(Rx(τ)−∆Rx(τ))
∆Rx(τ)

(7.17)

The procedure is listed as (Algorithm III)
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1. Set n = 0. Let the initial value of R(n)
x (τ), denoted by R

(0)
x (τ), be given by R

(0)
x (τ) =

Rtar(τ).

2. Increase n by 1. Update R(n)
x (τ) by

R(n)
x (τ) = R(n−1)

x (τ)− a · [MR(R(n−1)
x (τ))−Rtar(τ)]M ′R(R(n−1)

x (τ)) (7.18)

where a (0 < a ≤ 1) is a scalar used to control the convergence speed. For numerical

stability, we suggest setting ∆Rx(τ) = 0.01Rx(τ).

3. Calculate the residual error cost function L(R̃(n)
x (τ)) = |MR(R̃(n)

x (τ)) − Rtar(τ)|2, and

compare it with a predefined threshold ε (ε � 1). If L(R̃(n)
x (τ)) > ε, go to step 2;

otherwise, stop.

Alternatively, we may define another error cost function L̂(R̃(n)
x (τ)) = |R̃(n)

x (τ)−R(n−1)
x (τ)|

/|R(n−1)
x (τ)|, when L̂(R̃(n)

x (τ)) > ε holds, go to step 2; otherwise, stop.

The output R(n)
x (τ) now gives the required temporal auto-correlation function of xR(t) (and

xI(t)) which leads to the pre-specified Ry(τ) = Rtar(τ).

Exploiting the above procedures, the Rx(τ) function which generates desired Ry(τ) is

obtained. The further procedure to generate sequence yNaka[n] = yNaka(nTs) is described below,

where Ts is a symbol duration. Assume we need to generate a stationary Nakagami-m sequence

with power σ2
y , length N , parameter m, and auto-correlation function Ry[n] = Rtar[n], for

n = 1, . . . , N .

1. Using Rtar(τ) and τ = nTs, form sequence Rtar[n]. Using Algorithm III, find Rx(τ), for

τ = nTs, n = 1, . . . , N .

2. Using N -point DFT of Rx[n], transform the auto-correlation function to frequency do-

main resulting in the power spectrum shaping function Fx[n]. A technique proposed

in [108,126] can be used for this step.

3. Using the N -point inverse DFT of the product of Fx[n] and a zero-mean white Gaussian

sequence, generate a time-domain Gaussian channel sequence x[n] = x(nTs).

4. Using Algorithm I or II and sequence x[n], find yNaka[n] = yNaka(nTs).
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Figure 7.4 Theoretical and simulated CDFs (lower tail) of generated Nak-
agami channels, m = 1.6.

7.5 Simulation Results

In this section, we provide simulation results to compare the techniques we proposed and

those available in the literature. For each simulation test, we set the Nakagami sequence length

to be N = 214, and generated 50 independent Nakagami sequences to obtain the simulator

output statistics.

Test 1: Accuracy of CDF of generated Nakagami-m sequences. Fig 7.4 is the comparison

of the empirical CDF of the amplitude of the channel samples with the analytical Nakagami-m

CDF with m = 1.6. The x-axis is in log-scale so that the lower tail of the CDF is magnified.

In Fig. 7.5, the analytical and complementary CDFs (upper tail) of the channel samples are

presented. Both analytical curves are obtained using (7.1), and for simulations the channel

samples are generated using Algorithms II and III. The result shows that both the lower and

upper CDF tail of the Nakagami amplitudes generated using the proposed simulation schemes

fit the analytical ones very well. The noticalbe zigzag shown on the empirical CDF is an

expected artifacts which could be fixed by increasing the simulator sequence’s length.

Test 2: Phase property of generated Nakagami-m sequences.
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Figure 7.5 Theoretical and simulated complementary CDFs (upper tail) of
generated Nakagami channels, m = 1.6.

In Fig. 7.6, the phase distribution is obtained by simulation of the generated Nakagami

channels using the proposed method (with m = 2.5), and the analytical curves is generated

using (7.5). The result shows that the phase property of generated sequence fit the analysis

very well. This observation demonstrates that our proposed technique (at least partially) has

solved the Nakagami channel simulator phase-ambiguity problem. We also verified the validity

of (7.5), the analytical results on phase distribution of Nakagami-m fading channels in [112].

Test 3: Analytical relation between Rx(τ) and Rtar(τ).

Given the target Nakagami normalized correlation function R̃y(τ) = Rtar(τ) = J0(2πBfτ),

what should the temporal auto-correlation function Rx(τ) of original Gaussian sequences

should be? This question is answered in Fig. 7.7, where (Rayleigh channels) we show the

Rx(τ), calculated by the proposed auto-correlation function mapping method (Algorithm III),

with m = 2.5 and BfT = 0.03. Fig. 7.7 shows that generally Rx(τ) 6= Ry(τ) for τ > 0. When

Ry(τ) is defined to follow the Jakes’ model, it turns out that Rx(τ) does not follow Jakes’

model. The divergence between Rx(τ) and Ry(τ) is most significant for negative and mini-

mum values of correlation, e.g., for Ry(τ) ∈ (−0.2,−0.4). Therefore, it is interesting to know if
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Figure 7.6 Analytical and simulated phase distribution of the generated
Nakagami-m sequence for m = 2.5

one uses Rx(τ) = J0(2πBfτ), and the Rx(τ) generated using Algorithm III, respectively, what

will the Ry(τ) be, respectively.

Assume that we need a Nakagami sequence with R̃y(τ) = Rtar(τ) = J0(2πBfτ). This

may be obtained using CDF method and Rayleigh Gaussian sequences x(t) with the following

auto-correlation functions (1) Rx(τ) = Rtar(τ) = J0(2πBfτ), which we call traditional direct

mapping method, and it involves approximations; (2) Rx(τ) is generated using the proposed

mapping technique (Algorithm III). This is a strict approach but requires a larger complexity

than the direct mapping method. With the help of (7.12), the resulting analytical auto-

correlation function Ry(τ) of generated Nakagami channels are given in Fig. 7.8, respectively,

based on direct mapping of RRay(τ) to RNaka(τ). for m = 2.5 and BfT = 0.03. The result

shows that (1) the proposed technique can achieve the near-perfect target temporal correlation;

(2) If we use Rx(τ) = Rtar(τ), thus the traditional direct mapping, the resulting Nakagami

temporal correlation will be different from the target correlation, but the mismatch is still a

tight approximation. Therefore, as a low complexity approximation, Algorithm I (or II) and

direct mapping of Rx(τ) can be combined to achieve a correct non-uniform phase distribution
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and tight approximation of R̃y(τ) = Rtar(τ).

Figure 7.7 Auto-correlation function Rx(τ) of original Gaussian sequence
calculated by the proposed mapping method vs. τ , given that
Ry(τ) = Rtar(τ) = J0(2πBfτ), m = 2.5, and BfT = 0.03.

Test 4: Relation between Rx(τ) and Ry(τ) by simulation.

We assume that the target normalized auto-correlation function for Nakagami sequence is

Ry(τ) = J0(2πBfτ). In Fig. 7.9, simulated auto-correlation sequences Ry(τ) of generated Nak-

agami channels vs. τ using the traditional direct mapping (Rx(τ) = Rtar(τ)) and the proposed

mapping methods (Algorithm III) are presented, assuming m = 4.5 and BfT = 0.04. Since the

complexity involved in Algorithm III may be large for a large sequence length N , in the sim-

ulation we generated Rx[n] = Rx(nTs) only for the first 1024 values of n, (n = 0, 1, . . . , 1023),

and then use direct mapping for the remaining values of Rx[n]. This approximation involves

actually negligible effect on the accuracy of simulation statistics. The results in Fig. 7.9 show

that Algorithms III attains a near-perfect matching between the resulting auto-correlation

function Ry(τ) and the target Jakes’ model, while the conventional direct mapping method

causes some mismatches, especially for peak negative values of correlation. However, this may

still be acceptable as a tight approximation.
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Figure 7.8 Analytical auto-correlation function Ry(τ) of generated
Nakagami channels using the direct mapping method
(Rx(τ) = Rtar(τ) = J0(2πBfτ)) and the proposed inverse map-
ping vs. τ . m = 2.5, and BfT = 0.03.

7.6 Conclusions

In this chapter, we have provided a systematic procedure on the reconstruction of complex

Nakagami-m fading channels with correct non-uniform phase distribution, independent real

and imaginary parts of the channel, and fitting any pre-specified Nakagami-m temporal auto-

correlation function. We have shown the previously unknown fact that the Rayleigh auto-

correlation function is different from that for Nakagami channels, and also provided a numerical

search technique to calculate what the corresponding Rayleigh auto-correlation function should

be in order to generate the Nakagami-m sequences with pre-specified temporal correlation

function. Simulation results have verified the accuracy and validity of our analysis, and shown

that our approach can accurately reconstruct arbitrary pre-specified auto-correlation function

for the Nakagami channel simulation.
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Figure 7.9 Simulated auto-correlation sequences Ry(τ) of generated Nak-
agami channel vs. τ using the direct correlation-function map-
ping (Rx(τ) = Rtar(τ)) and the proposed mapping (Algorithm
III) methods, respectively. m = 4.5, and BfT = 0.04.
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CHAPTER 8. CONCLUSIONS AND FUTURE WORK

In this thesis, we studied three important issues in multiuser wireless communication sys-

tems to provide insights of how to provide higher throughput, lower communication error, and

better support for simultaneous communication of multiple users under fading channels. First

we investigated the performance of MRC and GSC diversity receivers for M -QAM modulations

under different fading channel models with imperfect channel estimation. We presented the

exact BER performance results that take into account of fading channel conditions the system

experienced, the modulation scheme used and the type of channel estimators employed. By

applying these results on practical systems, we predicted with high accuracy how the system

would perform under practical choice of channel estimation parameters. We then focused on

a different class of problems, namely multiuser diversity-based scheduling and power alloca-

tion algorithms. Motivated by the fact that conventional CDMA systems ignore the multiuser

diversity and the existing selection multiuser diversity systems are not designed explicitly for

CDMA multiuser systems, we propose a novel GSMuD scheduling algorithm that schedules

multiple users for simultaneous communication in a CDMA fashion. The proposed algorithms

take into account whether perfect or imperfect channel state information is available at the

scheduler and act accordingly. Several schemes to allocate the total system power to selected

users are proposed, namely simple-to-implement equal power allocation, and the optimal 1-D

and 2-D power allocation. We analyzed the various fairness metrics of the proposed a-SNR-

based GSMuD as well as the n-SNR-based GSMuD, and the latter balances the need to provide

better performance and fairness in the user selection process. We presented our contribution

on the design and analysis of diversity receiver and multiuser diversity systems in this thesis in

the context of wireless multipath fading channels. However, during the course of generating the
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simulation results for Chapter 3 through Chapter 6, we discovered that the existing methods

in the literature to simulate the Nakagami-m fading channel coefficients are limited both in

scope and accuracies, despite the fading channel model’s widespread adoption. We designed a

novel fading channel simulator for the Nakagami-m model with the correct phase distribution,

accurate auto-correlation properties and low complexity. We presented the results in Chapter

7. As a matter of fact, we used this proposed approach to generate the fading channels in all

the simulations that require the Nakagami-m fading channel models throughout this thesis.

Their accuracy in matching the respective analytical results verifies both the validity of the

presented analysis and the accuracy of the proposed fading channel simulator.

We have the following three topics for possible future research and extension that are closely

related to the works and approaches discussed in this thesis.

• BER performance of M -QAM for GSC in arbitrarily correlated generalized fading chan-

nels We derived the signal constellation dependent combiner output SNR in our ap-

proach to evaluate the performance of M -QAM with GSC in generalized fading channels.

In this framework, the i.i.d fading channels among all the diversity branches are assumed.

We noticed that this framework can be readily extended to the i.n.d fading case by de-

riving the MGF of the SNR for i.n.d channels. Another topic of interest is to study the

effect of correlated diversity branches on the BER performance of GSC combiners. This

is an important extension because in practice the available diversity branches are often

correlated and thus how to design and evaluate the performance of GSC with correlated

branches is more relevant. Authors in [128] proposed a way to obtain distribution of out-

put SNR of the correlated branches in Nakagami-m fading channel. But the approach

and result therein are not directly applicable to GSC case. Further study on this topic

would be required.

• GSMuD in practical CDMA/OFDMA/SDMA systems In the design and analysis of

GSMuD related algorithms, we assume that each user experience an independent fading.

There are some practical cases where this assumption does not hold, i.e. when users are

physically close to each other. We plan to extend our analysis to the situation where the
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channels between users may have arbitrary correlation. We also plan to extend our results

to the Weibull and Nakagami-q fading case due to the reasons cited above. In the thesis,

we assume the orthogonal spreading code for CDMA or separate carriers for OFDM

case. We note that the in practice, non-orthogonal spreading code might be used. We

plan to include the effect of channel non-orthogonality and interferences in the design of

GSMuD algorithm, by implementing the user ranking based on the signal-to-interference-

plus-noise ratio (SINR) instead of the SNR [67,68,79]. The power allocation algorithms

and the related performance and fairness metric need to be re-designed. We assumed the

base station has the accurate and up-to-date user channel condition feedback (in terms of

SNR) from the user. However, this assumption is not always valid. In practice, this SNR

feedback may not track the current channel status if the channel experience fast fading,

or inaccurate if there are communication errors during the feedback. We proved in [82]

that under delayed feedback assumptions, the delayed channel SNR and SNR feedback

error are independent and thus the ICE model (4.2) can also be used for the delayed

SNR feedback case. This would facilitate the effort to readily incorporate this problem

of out-dated SNR information into GSMuD error analysis and scheduler design.

A more general extension of GSMuD is to adapt the proposed algorithms to OFDMA

and spacial division multiple access (SDMA), hybrid OFDMA/SDMA, CDMA/SDMA,

and CDMA/OFDAM/SDMA systems. For example, hybrid OFDMA/SDMA scheme has

been selected as a promising standard in next generation WiMax systems (IEEE 802.16e).

In such systems, multiple users can be selected to occupy the same subcarrier of OFDM,

thus increasing system capacity. This is made possible by using of advanced antenna

systems (AAS) to separate user traffic by beamforming and interference cancelation.

Apparently, SDMA channelization is not orthogonal and SINR must be used as the

ranking criteria instead of SNR. We need to develop a “two-dimensional” GSMuD scheme

where users are selected based on their SINR and spacial location properties and are

assigned subcarriers to share with some other users. GSMuD scheme needs to consider

the optimal ways of selecting and arranging users based on their spacial relationships for
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transmitting on the same subcarriers, in addition to SINR rankings.

• MIMO fading channel simulator We plan to extend our framework to include the

MIMO channel case. Co-channel cross-correlation is inherent in practical wireless MIMO

channels [118]. We plan to extend our simulator’s capability to generate MIMO chan-

nel realizations that has co-channel correlation, while each channel could have its own

temporal autocorrelation identical or not. Using the channel coefficients mapping and

auto-correlation mapping method, we could extend our simulator to other non-Gaussian

RV based fading models such as Weibull fading. We noticed that under certain con-

ditions, Weibull model is a better fit for describing multipath fading channels in both

indoor [42] and outdoor radio propagation environments [43]. However, a technical diffi-

culty in generating Weibull fading channel coefficients with the independent quadrature

parts using the proposed approach lies in the fact that unlike Nakagami-m case, the

quadratures of Weibull fading channel coefficients no longer follow the Weibull fading.

Thus if unmodified, our approach could only generate Weibull fading coefficients that

has correlated quadrature parts, as in [111] for the case of Nakagami-m fading. One pos-

sible extension is to look into ways to generate independent quadrature parts for Weibull

fading. Fortunately, the other parts of our proposed approach can still be applied.
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